Characteristics of Immobilized PVA Beads in Nitrate Removal

  • Cho Kyoung-Sook (Department of Biotechnology and Bioengineering, Pukyong National University) ;
  • Park Kyoung-Joo (Department of Biotechnology and Bioengineering, Pukyong National University) ;
  • Jeong Hyun-Do (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Nam Soo-Wan (Department of Biotechnology and Bioengineering, Dong-Eui University) ;
  • Lee Sang-Joon (Department of Microbiology, Busan National University) ;
  • Park Tae-Joo (Department of Environmental Engineering, Busan National University) ;
  • Kim Joong-Kyun (Department of Biotechnology and Bioengineering, Pukyong National University)
  • Published : 2006.03.01

Abstract

Before applying PVA bio-beads to practical biological treatment of nitrate-containing wastewater, their characteristics were examined. PVA bio-beads could steadily produce nitrogen gas from nitrate for 28 batches with 0.04 ml/l/h of the maximum gas production rate; however, the maximum gas production rate dropped remarkably thereafter with apparent deformation of beads. Addition of 2.2% solution containing 1% casamino acid, 1% yeast extract, 0.1% mineral solution, and 0.1% vitamin solution to the culture medium resulted in not only recovery of activity of deactivated beads, but also a higher rate of gas production. Calculation of economic benefit for the use of bio-beads in a long-run operation indicated that reactivation of bio-beads by chemicals had economical advantages over packing new bio-beads in the system. The continuously stirred bioreactor exhibited a satisfactory performance at HRT of 20.0 h. With a 9.5 mg $NO_{3}^{-}N/l/h$ nitrate removal rate, nitrate could completely be removed without nitrite accumulation. The use of PVA bio-beads in nitrate removal appears very promising.

Keywords

References

  1. Chen, K.-C., S.-J. Chen, and J.-Y. Houng. 1996. Improvement of gas permeability of denitrifying PVA gel beads. Enzyme Microb. Technol. 18: 502-506 https://doi.org/10.1016/0141-0229(95)00160-3
  2. Chen, K.-C., S.-C. Lee, S.-C. Chin, and J.-Y. Houng. 1998. Simultaneous carbon-nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms. Enzyme Microb. Technol. 23: 311-320 https://doi.org/10.1016/S0141-0229(98)00054-4
  3. Chen, K.-C. and Y. F. Lin. 1994. Immobilization of microorganisms with phosphorylated polyvinyl alcohol (PVA) gel. Enzyme Microb. Technol. 16: 79-83 https://doi.org/10.1016/0141-0229(94)90113-9
  4. Hashimoto, S. and K. Furukawa. 1987. Immobilization of activated sludge by PVA-boric acid method. Biotechnol. Bioeng. 30: 52-59 https://doi.org/10.1002/bit.260300108
  5. Jefferson, B., J. E. Burgess, A. Pochon, J. Harkness, and S. J. Judd. 2001. Nutrient addition to enhance biological treatment of greywater. Water Res. 35: 2702-2710 https://doi.org/10.1016/S0043-1354(00)00553-4
  6. Jun, B.-H., K. Miyanage, Y. Tanji, and H. Unno. 2003. Removal of nitrogenous and carbonaceous substances by a porous carrier-membrane hybrid process for wastewater treatment. Biochem. Eng. J. 14: 37-44 https://doi.org/10.1016/S1369-703X(02)00119-5
  7. Kariminiaae-Hamefaani, H.-R., K. Kanda, and F. Kato. 2004. Denitrification activity of the bacterium Pseudomonas sp. ASM-2-3 isolated from the Ariake Sea Tideland. J. Biosci. Bioeng. 97: 39-44
  8. Kim, J. K., S.-K. Kim, and S.-H. Kim. 2001. Characterization of immobilized denitrifying bacteria isolated from municipal sewage. J. Microbiol. Biotechnol. 11: 756-762
  9. Kim, S. H., S. H. Song, and Y. J. Yoo. 2004. The pH as control parameter for oxidation reduction potential on the denitrification by Ochrobacterum anthropi SY509. J. Microbiol. Biotechnol. 14: 639-642
  10. Koike, I. and A. Hattori. 1975. Growth yield of a denitrifying bacterium, Pseudomonas denitrificans, under aerobic and denitrifying conditions. J. Gen. Microbiol. 88: 1-10 https://doi.org/10.1099/00221287-88-1-1
  11. Lee, N. M. and T. Welander. 1996. The effect of different carbon sources on respiratory denitrification in biological wastewater treatment. J. Ferment. Bioeng. 82: 277-285 https://doi.org/10.1016/0922-338X(96)88820-9
  12. Lemmer, H., G. Lind, G. Metzner, L. Nitschke, and M. Schade. 1998. Vitamin addition in biological wastewater treatment. Water Sci. Technol. 37: 395-398 https://doi.org/10.1016/S0273-1223(98)00136-X
  13. Matsumura, M., H. Tsubota, O. Ito, P.-C. Wang, and K. Yasuda. 1997. Development of bioreactors for denitrification with immobilized cells. J. Ferment. Bioeng. 84: 144-150 https://doi.org/10.1016/S0922-338X(97)82544-5
  14. Nagadomi, H., T. Hiromitsu, K. Takeno, M. Watanabe, and K. Sasaki. 1999. Treatment of aquarium water by denitrifying photosynthetic bacteria using immobilized polyvinyl alcohol beads. J. Biosci. Bioeng. 87: 189-193 https://doi.org/10.1016/S1389-1723(99)89011-2
  15. Nussinovich, A., Y. Aboutboul, Z. Gershon, and J. van Rijn. 1996. Changes in mechanical, structural, and denitrifying properties of entrapped Pseudomonas stutzeri bacteria preparations. Biotechnol. Prog. 12: 26-30 https://doi.org/10.1021/bp950054q
  16. Pai, S.-L, N.-M. Chong, and C.-H. Chen. 1999. Potential applications of aerobic denitrifying bacteria as bioagents in wastewater treatment. Bioresour. Technol. 68: 179-185 https://doi.org/10.1016/S0960-8524(98)00140-0
  17. Park, E.-J., J.-K. Seo, J. K. Kim, K.-H. Suh, and S.-K. Kim. 2000. Denitrification characteristics and microorganism composition of acclimated denitrifier consortium. J. Microbiol. Biotechnol. 10: 410-414
  18. Rostron, W. M., D. C. Struckey, and A. A. Young. 2001. Nitrification of high strength ammonia wastewaters: Comparative study of immobilisation media. Water Res. 35: 1169-1178 https://doi.org/10.1016/S0043-1354(00)00365-1
  19. Schulthess, R., M. Kuhni, and W. Gujer. 1995. Release of nitric and nitrous oxides from denitrifying activated sludge. Water Res. 29: 215-226 https://doi.org/10.1016/0043-1354(94)E0108-I
  20. Shen, J. and O. Hirayama. 1993. Denitrification of PVAimmobilized denitrifying photosynthetic bacterium, Rhodobacter sphaeroides. J. Ferment. Bioeng. 75: 43-47 https://doi.org/10.1016/0922-338X(93)90176-9
  21. Song, S. H., S. H. Yeom, S. S. Choi, and Y. J. Yoo. 2003. Effect of oxidation-reduction potential on denitrification by Ochrobacterum anthropi SY509. J. Microbiol. Biotechnol. 13: 473-476
  22. Tartakovsky, B., L. Petti, J. Hawari, and S. R. Guiot. 1998. Immobilization of anaerobic sludge using chitosan crosslinked with lignosulfonate. J. Indust. Microbiol. 20: 45-47 https://doi.org/10.1038/sj.jim.2900473
  23. Wijffels, R. H., G. Englund, J. H. Hunik, E. J. T. M. Leenan, A. Bakketun, A. Gunther, J. M. Obon de Castro, and J. Tramper. 1995. Effects of diffusion limitation on immobilized nitrifying micro-organisms at low temperatures. Biotechnol. Bioeng. 45: 1-9 https://doi.org/10.1002/bit.260450102
  24. Wijffels, R. H., G. C. Schukking, and J. Tramper. 1990. Characterization of a denitrifying bacteria immobilized in kcarrageenan. Appl. Microbiol. Biotechnol. 34: 399-403