• Title/Summary/Keyword: nitrate removal

Search Result 402, Processing Time 0.033 seconds

Nitrate reduction by iron supported bimetallic catalyst in low and high nitrogen regimes

  • Hamid, Shanawar;Lee, Woojin
    • Advances in environmental research
    • /
    • v.4 no.4
    • /
    • pp.263-271
    • /
    • 2015
  • In this study, the effect of initial nitrate loading on nitrate removal and byproduct selectivity was evaluated in a continuous system. Nitrate removal decreased from 100% to 25% with the increase in nitrate loading from 10 to $300mg/L\;NO_3-N$. Ammonium selectivity decreased and nitrite selectivity increased, while nitrogen selectivity showed a peak shape in the same range of nitrate loading. The nitrate removal was enhanced at low catalyst to nitrate ratios and 100% nitrate removal was achieved at catalyst to nitrate ratio of ${\geq}33mg\;catalyst/mg\;NO_3-N$. Maximum nitrogen selectivity (47%) was observed at $66mg\;catalyst/mg\;NO_3-N$, showing that continuous Cu-Pd-NZVI system has a maximum removal capacity of 37 mg $NO_3{^-}-N/g_{catalyst}/h$. The results from this study emphasize that nitrate reduction in a bimetallic catalytic system could be sensitive to changes in optimized regimes.

A Study on the Behaviour of Organics and Nitrogen Using Upflow Anaerobic Reactor When Acid Fermenter is Added (상향류식 혐기성반응조와 산발효조의 병합처리시 유기물질과 질소거동에 관한 연구)

  • Oh, Dae-Min;Lee, Young-Shin
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.325-331
    • /
    • 2009
  • This study was aimed to behaviour of organics and nitrogen on the upflow anaerobic reactor when a acid fermenter is added. Up flow anaerobic reactor (UAR) reaction will result which operates, COD removal efficiencies of reactor with nitrate loading rate 0.11, 0.66g/L/d were over 77%, but one with 1.0g/L/d was 73.5%. Especially, on NLR 0.11g/L/d, COD removal was 77% and nitrate removal efficiency was 93% simultaneously. The other side upflow anaerobic reactor and acid fermenter (UAR+AF) reaction will result witch operates, COD removal efficiencies of reactor with nitrate loading rate 0.11, 0.66g/L/d were over 85%, but one with 1.0g/L/d was 80%. Especially, on NLR 0.11g/L/d, COD removal was 85% and nitrate removal efficiency was 98% simultaneously. Also, without in reaction condition increase of influent nitrate concentration resulted in the linear decrease of nitrate removal efficiency and nitrate removal efficiency at influent nitrate-nitrogen 800mg/L was 50%. Alkalinity was increased theoretically by denitrification at low nitrate-N concentration, however, it was not increased theoretically at high nitrate-No 40% nitrate-N of UAR was denitrified until 70% height of reactor and 90% nitrate-N of UAR+AF was denitrified until 30% height of reactor Upflow anaerobic reactor was to occur accumulate acid, which TVA/Alkalinity is 0.3$\sim$0.47. Increase of NLR resulted increase of effluent alkalinity and TVA production

Nitrate Removal by $FeCl_3$-Treated Activated Carbon (염화철 처리 활성탄에 의한 질산염 제거)

  • 정경훈;최형일;정오진
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.63-68
    • /
    • 2001
  • A laboratory experiment was performed to invstigate the nitrate removal using FeCl$_3$ -treated activated carbon. Iron chloride(III) was coated onto the surface of activated carbon. The removal efficiency of nitrate was increased with increasing of FeCl$_3$ was used for coating material. About 22~26mg of Fe per unit g of activated carbon was adsorbed. The nitrate removal was not affected by the pH under the experiment range of pH, but the pH value in solution decrease to 3.5~4.0 after reaction. The removal efficiency of nitrate was increased with increasing of dosage of adsorbents. Ammonia was not detected and the Fe concentration as low as 0.22mg/$\ell$ was desorbed from the adsorbents. The adsorbents was regenerated using KCl solution, and recovery was 76.6% at 1 M of KCl. The adsorption of nitrate by FeCl$_3$-treated activated carbon followed the Freundlich isotherm equation and the Freundlich constant, 1/n, was 0.346. These results showed that the FeCl$_3$-treated activated carbon could serve as the basis of a useful nitrate removal.

  • PDF

Nitrate Removal in a Packed Bed Reactor Using Volatile Fatty Acids from Anaerobic Acidogenesis of Food Wastes

  • Lim, Seong-Jin;Ahn, Yeong-Hee;Kim, Eun-Young;Chang, Ho-Nam
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.538-543
    • /
    • 2006
  • A packed bed reactor (PBR) was fed with nitrate containing synthetic wastewater or effluent from a sequencing batch reactor used for nitrification. The C source introduced into the PBR consisted of volatile fatty acids (VFAs) produced from anaerobic acidogenesis of food wastes. When nitrate loading rates ranged from $0.50\;to\;1.01\;kg\;N/m^{3}{\cdot}d$, the PBR exhibited $100{\sim}98.8%\;NO_{3}^{-}-N$ removal efficiencies and nitrite concentrations in the effluent ranged from $0\;to\;0.6\;NO_{2}^{-}-N\;mg/L$. When the PBR was further investigated to determine nitrate removal activity along the bed height using a nitrate loading rate less than $1.01\;kg\;N/m^{3}{\cdot}d$, 100% nitrate removal efficiency was observed. Approximately 83.2% nitrate removal efficiency was observed in the lower 50% of the packed-bed height. When reactor performance at a C/N ratio of 4 and a C/N ratio of 5 was compared, the PBR showed better removal efficiency (96.5%) of nitrate and less nitrite concentration in the effluent at the C/N ratio of 5. VFAs were found to be a good alternative to methanol as a carbon source for denitrification of a municipal wastewater containing 40 mg-N/L.

Remediation Groundwater contaminated with Nitrate and Phosphate using Micellar-enhanced ultrafiltration

  • 백기태;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.334-337
    • /
    • 2002
  • The drinking water industry faces a growing number of difficultiesin the treatment of groundwater for drinking water production. Groundwater sources are frequently contaminated with nitrates and phosphates due to usage of chemical fertilizer In this study, feasibility of micellar enhanced ultrafiltation (MEUF) was investigated to remediate groundwater contaminated with nitrate and phosphate. Ultrafiltration membrane was cellulose acetate with molecular weight cut off (MWCO) 10,000 and celtyl pyridinium chloride (CPC) was used to form pollutant-micelle complex with nitrate and phosphate. The results show that nitrate and phosphate rejections are satisfactory. The removal efficiency of nitrate and phosphate show 80% and 84% in single pollutant system, respectively with 3 molar ratio of CPC to pollutants. In the multi-pollutant systems, the removalefficiency increased to 90 % and 89 % for nitrate and phosphate, respectively, The presence of nitrate in the solutions did not affect the removal of phosphate and that of phosphate did not affect the removal of nitrate. The concentration of CPC in the permeate and removal efficiency of CPC was a function of the concentration of CPC in the feed solutions.

  • PDF

Anaerobic Treatment of Nitrate in Landfill Leachate (쓰레기 매립장 침출수 중 질소저감방안)

  • Kwon, Young Ho;Kim, Ho Ju
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.4
    • /
    • pp.70-77
    • /
    • 1998
  • On this study, removal ability of nitrate was researched in the anaerobic zone arounding collection pipes in landfill. Stability state time of column was after 20 days and 20~90ml/day in flux. In this time, removal rate of phosphate was about 80%. Removal ability and average removal rate of CODCr is $36g/m^3{\cdot}d$, 25.3%, respectively. It was that reactor is able to remove more nitrate. Maximum nitrate removal ability was $4.83g/m^3{\cdot}d$.

  • PDF

Electron Donor Determination and Comparisons of Reaction Rates for Bioremediation of Nitrate Contaminated Groundwater (질산성 질소로 오염된 지하수의 생물복원을 위한 적정 전자공여체의 결정 및 반응속도 비교 연구)

  • Oa, Seongwook;Lee, Yoonhee;Kim, Geonha;Kim, Young
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.630-636
    • /
    • 2005
  • Groundwater contamination by nitrate exceeding water quality criteria (10 mg $NO_3{^-}-N/L$) occurs frequently. Fumarate, acetate, formate, lactate, propionate, ethanol, methane and hydrogen gas were evaluated for their nitrate removal efficiencies and removal rates for in situ bioremediation of nitrate contaminated groundwater. Denitrification rate for each substrate was in the order of: fumarate > hydrogen > formate/lactate > ethanol > propionate > methanol > acetate. Microcosm studies were performed with fumarate and acetate. When fumarate was used as a substrate, nitrate was removed 100 percent with rate of 0.66 mmol/day while conversion rate from nitrate to nitrogen gas or another by-product was 87 percent. 42 mg of fumarate was needed to remove 30 mg $NO_3{^-}-N/L$. When using acetate as carbon source, 31 percent of nitrate was removed during initial adjustment period. Among removed fraction, however, 83 percent of nitrate removed by cell growth. Overall nitrate removal rate was 0.37 mmol/day. Acetate showed longer lag time in consumption compared to that of nitrate, which implying that acetate would be better carbon source compared to fumarate as more amount was utilized for nitrate removal than cell growth.

Nitrate Removal and Recycling Technique (질산 제거 및 재이용 기술)

  • Sim, Sang Jun;Lee, Kyung Hee;Cho, Young Sang
    • Clean Technology
    • /
    • v.3 no.2
    • /
    • pp.31-33
    • /
    • 1997
  • Nitrate contamination in surface water and ground water have increased in Korea. This trend has raised concern because nitrates caused methemoglobinemia in infants. To remove nitrates from waters, various purification processes including ion-exchange, biological denitrification, and chemical denitrification are currently in use for the treatment of water. However, little economically advantageous process exists for the industrial scale treatment of effluents highly polluted with nitrates. A new process has been developed for nitrate and other salts removal from polluted waters. Alumina cement and lime served as precipitating agents to remove nitrate with stirring at basic pH. Decreasing alumina content in alumina cement result in a increasing in nitrate removal yield. Stable removal of nitrate(1000mg/L) was readily achieved by two-stage removal process.

  • PDF

Removal of nitrate by electrodialysis: effect of operation parameters

  • Park, Ki Young;Cha, Ho Young;Chantrasakdakul, Phrompol;Lee, Kwanyong;Kweon, Ji Hyang;Bae, Sungjun
    • Membrane and Water Treatment
    • /
    • v.8 no.2
    • /
    • pp.201-210
    • /
    • 2017
  • We investigated the effect of applied voltage and electrolyte concentration on the nitrate removal and its energy/current efficiency during the electrodialysis. The current increased as the applied voltage increased up to 30 V showing the limiting current density around 20 V. The nitrate removal efficiency (31 to 71% in 240 min) and energy consumption (11 to $77W{\cdot}h/L$) gradually increased as the applied voltage increased from 10 to 30 V. The highest current efficiency was obtained at 20 V. The increase in electrolyte concentration from 100 to 500 mM led to the dramatic increase of nitrate removal efficiency with much faster removal kinetics (100 % in 10 min).

Evaluation of the Nitrate Anion in Recon Extract by Adsorbents

  • Han, Young-Rim;Sung, Yang-Joo;Park, Jin-Won;Kim, Yang-Ok;Rhee, Moan-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.29 no.2
    • /
    • pp.104-109
    • /
    • 2007
  • The amount of nitrate in the tobacco leaf has been shown to be correlated with the levels of alkaloids and nitrosamines. Also the nitrate content of the tobacco correlated closely with the smoke delivery of nitric oxide and tobacco-specific nitrosamines (TSNAs). These are related with the effect of the reconstituted tobacco leaf(Recon) using the tobacco stems. Adsorption process is gaining interest as one of the effective processes of advanced liquid treatment for liquid containing unnecessary materials. This study is focused on the evaluation of four anion exchangers, a cation exchanger and an activated carbon, as adsorbents for reduction of nitrate anion from Recon extract. In order to analyze the nitrate anion, the IC method used in this work was carried out with a Dionex ICS-2000 system. The effects of dosages of adsorbents and concentration of extract on the removal of nitrate anion were examined. Experimental results showed that for nitrate-anion exchanger, nitrate-cation exchanger and nitrate-activated carbon adsorption system, approximately 70 %, 10 %, and 4 % removal efficiencies were achieved at the Brix 10 and the 20 % addition. Although the activated carbon was little efficient for removal of nitrate ion, the removal of nicotine was very efficient at given conditions.