DOI QR코드

DOI QR Code

Preparation and Characterization of Cellulose Nanofibril/Polyvinyl Alcohol Composite Nanofibers by Electrospinning

  • Park, Byung-Dae (Department of Wood Science and Technology, Kyungpook National University) ;
  • Um, In Chul (Department of Bio-fibers and Materials Science, Kyungpook National University) ;
  • Lee, Sun-Young (Division of Wood Processing, Korea Forest Research Institute) ;
  • Dufresne, Alain (Grenoble Institute of Technology (Grenoble INP), The International School of Paper)
  • Received : 2013.12.27
  • Accepted : 2014.02.10
  • Published : 2014.03.25

Abstract

This work undertook to prepare nanofibers of cellulose nanofibrils (CNF)/polyvinyl alcohol (PVA) composite by electrospinning, and characterize the electrospun composite nanofibers. Different contents of CNFs isolated from hardwood bleached kraft pulp (HW-BKP) by 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)-mediated oxidation were suspended in aqueous polyvinyl alcohol (PVA) solution, and then electrospun into CNF/PVA composite nanofibers. The morphology and dimension of CNFs were characterized by transmission electron microscopy (TEM), which revealed that CNFs were fibrillated form with the diameter of about $7.07{\pm}0.99$ nm. Morphology of the electrospun nanofiber observed by field-emission scanning electron microscopy (FE-SEM) showed that uniform CNF/PVA composite nanofibers were manufactured at 1~3% CNF contents while many beads were observed at 5% CNF level. Both the viscosity of CNF/PVA solution and diameter of the electrospun nanofiber decreased with an increase in CNF content. The diameter and its distribution of the electrospun nanofibers helped explain the differences observed in their morphology. These results show that the electrospinning method was successful in preparing uniform CNF/PVA nanofibers, indicating a great potential for manufacturing consistent and reliable cellulose-based nanofibrils for scaffolds in future applications.

Keywords

References

  1. Ahn, Y., Lee, S.H., Kim, H.J., Yang, Y.H., Hong, J.H., Kim, Y.H., and Kim, H. 2012. Electrospinning of lignocellulosic biomass using ionic liquid. Carbohydr. Polym. 88(1): 395-398. https://doi.org/10.1016/j.carbpol.2011.12.016
  2. Azizi Samir, M.A.S.A., Alloin, F., and Dufresne, A. 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6: 612-626. https://doi.org/10.1021/bm0493685
  3. Baumgarten, P.K. 1971. Electrostatic spinning of acrylic microfibers. J. Colloid. Interf. Sci. 36: 71 -79. https://doi.org/10.1016/0021-9797(71)90241-4
  4. de Nooy, A.E.J., Besemer, A.C., and van Bekkum, H. 1995. Highly selective nitroxyl radical- mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr. Res. 269: 89-98. https://doi.org/10.1016/0008-6215(94)00343-E
  5. de Nooy, A.E.J., Besemer, A.C., and van Bekkum, H. 1996.On the use of stable organic nitroxyl radicals for the oxidation of primary and secondary alcohols. Synth. 10: 1153-1174.
  6. Bhardwaj, N., and Kundu, S.C. 2010. Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28: 325-347. https://doi.org/10.1016/j.biotechadv.2010.01.004
  7. Cho, M., Park, B.D., and Kadla, J.F. 2012. Characterization of Electrospun Nanofibers of Cellulose Nanowhisker/Polyvinyl Alcohol Composites. J. Kor. Wood Sci. Technol. 40(2): 71-77. https://doi.org/10.5658/WOOD.2012.40.2.71
  8. Chronakis, I.S. 2005. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-A review. J. Mater. Process. Technol. 167: 283-293. https://doi.org/10.1016/j.jmatprotec.2005.06.053
  9. Doshi, J. and Reneker, D.H. 1995. Electrospinning process and applications of electrospun fibers. J. Electrostat. 35: 151-160. https://doi.org/10.1016/0304-3886(95)00041-8
  10. Eichhorn, S.J., Dufresne. A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Mangalam, A., Simonsen, J., Benight, A.S., Bismarck, A., Berglund, L.A., and Peijs, T. 2010. Review: current international research into cellulose nanofibres and nanocomposites. J.Mater. Sci. 45: 1-33. https://doi.org/10.1007/s10853-009-3874-0
  11. Fong H., Chun I., Reneker D.H. 1999. Beaded nanofibers formed during electrospinning, Polymer 40: 4585-4592. https://doi.org/10.1016/S0032-3861(99)00068-3
  12. Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y., and Isogai, A. 2009. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules, 10(1): 162-165. https://doi.org/10.1021/bm801065u
  13. Gupta, P., Elkins, C., Long, T.E., and Wilkes, G.L. 2005. Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polym. 46: 4799-4810. https://doi.org/10.1016/j.polymer.2005.04.021
  14. Hamad, W. 2002. Cellulosic Materials: Fibers, Networks and Composite, Kluwer Academic Publisher, Massachusetts.
  15. Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., and Ramakrishna, S. 2003. A review of polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63: 2223-2253. https://doi.org/10.1016/S0266-3538(03)00178-7
  16. Isogai, A., Saito, T., and Fukuzumi, H. 2011. TEMPO-oxidized cellulose nanofibers Nanoscale, 3: 71-85. https://doi.org/10.1039/c0nr00583e
  17. Khil, M.S., Kim, H.Y., Kang, Y.S., Bang, H.J., and Lee, D.R. 2005. Preparation of electrospun oxidized cellulose mats and their in vitro degradation behavior. Macromol. Res. 13(1): 62-67. https://doi.org/10.1007/BF03219016
  18. Koski, A., Yim, K., and Shivkumat, S. 2004. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater. Lett. 58: 493-497. https://doi.org/10.1016/S0167-577X(03)00532-9
  19. Mit-uppatham, C., Mithitanakul, M., and Supaphol, P. 2004. Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromol. Chem. Phys. 205: 2327-2338. https://doi.org/10.1002/macp.200400225
  20. Peresin, M.S., Habibi, Y., Zoppe, J.O., Pawlak, J.J., and Rojas, O.J. 2010. Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules, 11: 674-681. https://doi.org/10.1021/bm901254n
  21. Rosic, R., Pelipenko, J., Kristi, J., Kocbek, P., Bester-Rogac, M., and Baumgartner, S. 2013. Physical characteristics of poly(vinyl alcohol) solutions in relation to electrosdpun nanofiber formation. Eur. Polym. J. 49: 290-29. https://doi.org/10.1016/j.eurpolymj.2012.11.013
  22. Saito, T., andIsogai, A. 2004. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules, 5: 1983-1989. https://doi.org/10.1021/bm0497769
  23. Saito, T., Nishiyama, Y., Putaux, J.L., Vignon. M., and Isogai, A. 2006. Homogeneous suspensions of individualized microfibrils from TEMPOcatalyzed oxidation of native cellulose. Biomacromolecules, 7(6): 1687-1691. https://doi.org/10.1021/bm060154s
  24. Saito, T., Kimura, S., Nishiyama, Y., and Isogai, A. 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules, 8: 2485-2491. https://doi.org/10.1021/bm0703970
  25. Shinoda, R., Saito, T., Okita, Y., and Isogai, A. 2012. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules, 13: 842-849. https://doi.org/10.1021/bm2017542
  26. Son, W.K., Youk, J.H., and Lee, T.S. 2005. Effect of pH on electrospinning of poly(vinyl alcohol). Mater. Lett. 59: 1571-1575. https://doi.org/10.1016/j.matlet.2005.01.025
  27. Sturcova, A., Davies, G.R., and Eichhorn, S.J. 2005. Elastic modulus and stress transfer properties of tunicate cellulose whiskers. Biomacromolecules, 6: 1055-1061. https://doi.org/10.1021/bm049291k
  28. Suwantong, O., Opanasopit, P., Ruktanonchai, U., and Supaphol, P. 2007. Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer 48: 7546-7557. https://doi.org/10.1016/j.polymer.2007.11.019
  29. Tashiro, K., and Kobayashi, M. 1991. Theoretical evaluation of three dimensional elastic constants of native and regenerated cellulose: role of hydrogen bonds. Polymer 32: 1516-1526. https://doi.org/10.1016/0032-3861(91)90435-L
  30. Zhang, C., Yuan, X., Wu, L., Han, Y., and Sheng, J. 2005. Study on morphology ofelectrospun poly(vinyl alcohol) mats. Eur. Polym. J. 41(3): 423-432. https://doi.org/10.1016/j.eurpolymj.2004.10.027

Cited by

  1. Acylation of cellulose nanocrystals with acids/trifluoroacetic anhydride and properties of films from esters of CNCs vol.155, 2017, https://doi.org/10.1016/j.carbpol.2016.09.010
  2. Fundamental Properties of Electrospun Polylactic Acid/Cellulose Nanocrystal Composite Mats vol.43, pp.4, 2015, https://doi.org/10.5658/WOOD.2015.43.4.518
  3. Preparation of Lignocellulose Nanofibers from Korean White Pine and Its Application to Polyurethane Nanocomposite vol.42, pp.6, 2014, https://doi.org/10.5658/WOOD.2014.42.6.700
  4. Manipulation of Surface Carboxyl Content on TEMPO-Oxidized Cellulose Fibrils vol.43, pp.5, 2015, https://doi.org/10.5658/WOOD.2015.43.5.613
  5. Influence of sonication treatment on supramolecular cellulose microfibril-based hydrogels induced by ionic interaction vol.29, 2015, https://doi.org/10.1016/j.jiec.2015.03.034
  6. Mechanical and Thermal Properties of Hydroxypropyl Cellulose/TEMPO-oxidized Cellulose Nanofibril Composite Films vol.43, pp.6, 2015, https://doi.org/10.5658/WOOD.2015.43.6.740
  7. Fabrication and characterization of electrospun bionanocomposites of poly (vinyl alcohol)/nanohydroxyapatite/cellulose nanofibers vol.65, pp.13, 2016, https://doi.org/10.1080/00914037.2016.1157798