• Title/Summary/Keyword: PV module integrated converter

Search Result 27, Processing Time 0.024 seconds

Loss Analysis according to Configuration Method of AC Module Integrated Converter for Photovoltaic System (태양광 발전 시스템용 AC 모듈 집적형 전력변환기의 구성 방식에 따른 손실 분석)

  • Kang, Seung-Hyun;Son, Won-Jin;Ann, Sangjoon;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.311-318
    • /
    • 2020
  • A photovoltaic (PV) system uses an AC module integrated converter (MIC) to operate PV cells at a maximum power point (MPP) and for high efficiency. The MPP of a PV cell varies depending on partial shading conditions, and loss occurs differently according to the configuration method of the PV-MIC. Therefore, this study compares the losses of passive components and power semiconductors according to the partial shading conditions of the PV module. Theoretical loss analysis is performed using parameters for the datasheet and PSIM simulation results. Analysis results verify that the one-stage PV-MIC demonstrates high efficiency.

Soft Switching DC-DC Converter for AC Module Type PV Module Integrated Converter (AC 모듈형 태양광 모듈 집적형 컨버터를 위한 소프트 스위칭 DC-DC 컨버터)

  • Youn, Sun-Jae;Kim, Young-Ho;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.247-255
    • /
    • 2013
  • In this paper, a soft switching DC-DC converter for AC module type photovoltaic (PV) module integrated converter is proposed. A push-pull converter is suitable for a low voltage PV AC module system because the step-up ratio of a high frequency transformer is high and the number of primary side switches is relatively small. However, the conventional push-pull converters do not have high efficiency because of high switching losses by hard switching and transformer losses (copper and iron losses) by high turns-ratio of the transformer. In the proposed converter, primary side switches are turned on at zero voltage switching (ZCS) condition and turned off at zero current switching (ZVS) condition through parallel resonance between secondary leakage inductance of the transformer and a resonant capacitor. Therefore the proposed push-pull converter decreases the switching loss using soft switching of the primary switches. Also, the turns-ratio of the transformer can be reduced by half using a voltage-doubler of secondary side. The theoretical analysis of the proposed converter is verified by simulation and experimental results.

A PV-Module Integrated Phase Shift Full Bridge Converter for EV (태양광 모듈 통합 전기 자동차용 Phase Shift Full Bridge Converter)

  • Hwang, Yun-Kyung;Nam, Kwang-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.425-432
    • /
    • 2020
  • The phase-shifted, full-bridge (PSFB) DC-DC converter is widely used in electric vehicles (EVs) to charge a low-voltage (12 V) battery from a high-voltage battery. A Photovoltaic (PV) module-integrated PSFB converter is proposed for the EV power conversion system. The converter is useful because solar energy can be utilized to extend the driving range. The buck converter circuit is simply realized by adding one switch to the conventional PSFB converter's secondary side. For the inductor and diode, the existing components in the PSFB converter are shared. The proposed converter can charge a low-voltage battery from the PV module with maximum power point tracking. In addition, the two power sources can be used simultaneously, and efficiency is increased by reducing the circulating current, which is a problem for the conventional PSFB converter.

A high efficient PV system using series connection of DC-DC converter's output with photovoltaic panel (광전지 패널과 DC-DC 컨버터 출력의 직렬 접속을 이용한 고효율 PV 시스템)

  • Kim, Ho-Sung;Kim, Jong-Hyun;Min, Byung-Duk;Yoo, Dong-Wook;Hong, Ji-Tae;Lee, Dong-Gil;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1146-1147
    • /
    • 2008
  • PV Power Conditioning System (PCS) must have high conversion and low cost. Generally, PV PCS uses either a single converter or multilevel module integrated converter (MIC). Each of these approaches has both advantage and disadvantage. For a high conversion efficiency and low cost of PV module, this paper proposes series connection of module integrated DC-DC converter's output with PV panel. Output voltage of PV panel is connected to the output capacitor of flyback converter. Thus, converter's output voltage is added to the output voltage of PV panel. Isolated DC-DC converter generates only the difference voltage between the PV panel voltage and the required total output voltage. This method reduces power level of DC-DC converter and enhances the energy conversion efficiency compared with conventional DC-DC converter.

  • PDF

Study On Photovoltaic Module Integrated Converter based on Active Clamp Current-fed Half-Bridge Converter (능동 클램프 전류원 하프 브릿지 기반 태양광 모듈 집적형 전력변환장치에 대한 연구)

  • Jung, Hoon-Young;Park, Jeong-Kyu;Ji, Young-Hyok;Won, Chung-Yuen;Lee, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.105-113
    • /
    • 2011
  • In this paper, photovoltaic module integrated converter (MIC) based on active clamp current-fed half-bridge converter is proposed. The converter stage operates in zero-voltage condition using active clamp technique. The theoretical study and circuit design for proposed inverter are confirmed with PSIM simulator and experimental reusult.

A Study on Core Structure of High Frequency Transformer to Improve Efficiency of Module-Integrated Converter

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.295-299
    • /
    • 2014
  • Recently, module-integrated converter (MIC) research has shown interest in small-scale photovoltaic (PV) generation. The converter is capable of efficient power generation. In this system, the high frequency transformer should be made compact, and demonstrate high efficiency characteristics. This paper presents a core structure optimization procedure to improve the efficiency of a high frequency transformer of compact size. The converter circuit is considered in the finite element analysis (FEA) model, in order to obtain an accurate FEA result. The results are verified by the testing of prototypes.

Analysis and Realization of Control Sequence of Photovoltaic Module Integrated Converter (태양광 모듈 집적형 전력변환장치의 제어 시퀀스의 분석 및 구현)

  • Lee, Eun-Ju;Kim, Dong-Hee;Lee, Byoung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.93-94
    • /
    • 2012
  • 본 논문에서는 태양광 모듈 집적형 전력변환장치 (Photovoltaic Module Integrated Converter, PV MIC)를 구동하기 위한 제어 시퀀스를 분석하고 이를 구현한다. 이를 위해 Cascade Buck-Boost Converter Topology를 채택하였고, 이를 기반으로 일사조건에 따른 최대 전력점 추종을 위해 PV MIC의 동작 모드를 결정하는 제어 시퀀스를 제안한다. 실제 PV Module을 연결한 PV MIC의 구동 실험을 통하여 제안한 제어 시퀀스를 검증한다.

  • PDF

Digitally Controlled Interleaving Tapped-Inductor Boost Converter for Photovoltaic Module Integrated Converters (PV MIC)

  • Lee, Jye-June;Kim, Jitae;Bae, Hyunsu;Cho, B.H.
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.74-75
    • /
    • 2010
  • As global warming due to burning fossil fuels and natural resource depletion issues have emerged, the development of renewable energy sources such as photovoltaics (PV) has been brought to recent interest. Amongst the vast efforts to harvest and convert solar energy into electricity, the module integrated converters (MIC) has become a worthy topic of research for grid-connected photovoltaic systems. Due to the required high-boosting qualities, only a restricted amount of DC/DC converter topologies can be applied to MICs. This paper investigates the possibility of a tapped-inductor boost converter as a candidate for PV MICs. A dual-inductor interleaving scheme operating slightly above the boundary of the two conduction modes (BCM) is suggested for reduction of input current ripple and minimization of component stress. A digital controller is used for implementation, assuring maximum power tracking and transfer while providing sufficient computational space for other grid connectivity applications, etc. For verification, a 200W converter is designed and simulated via computer software including component losses. High efficiency over a wide power range proves the feasibility of the proposed PV MIC system.

  • PDF

MIC with Ripple Voltage Compensator Using Regenerative Snubber (에너지 회생형 스너브를 이용한 리플 전압 억제기를 가지는 MIC(Module Integrated Converter))

  • Kim, Hong-Sung;Chang, Hun Ki;Yoon, Yeo Young
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.75-76
    • /
    • 2014
  • This study deals with a isolation type MIC(Module Integrated Converter) for AC module with advantages such as DC Wireless, freely selectable installation capacity, minimized shadow effect etc. In this paper, MIC circuit with the function which can remove the ripple voltage of PV module and give the discharging path for charged energy in leakage inductance of isolation transformer. The validity of proposed circuir is verified by the simulation with PSIM.

  • PDF

Bi-Directional Buck-Boost Forward Converter for Photovoltaic Module type Power Conditioning System (태양광 모듈형 전력조절기를 위한 양방향 벅-부스트 포워드 컨버터)

  • Kim, Kyoung-Tak;Jeon, Young-Tae;Park, Joung-Hu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.335-342
    • /
    • 2016
  • This paper proposes an energy storage-assisted, series-connected module-integrated power conversion system that integrates a photovoltaic power conditioner and a charge balancing circuit. In conventional methods, a photovoltaic power conditioner and a cell-balancing circuit are needed for photovoltaic systems with energy storage devices, but they cause a complex configuration and high cost. Moreover, an imbalanced output voltage of the module-integrated converter for PV panels can be a result of partial shading. Partial shading can lead to the fault condition of the boost converter in shaded modules and high voltage stresses on the devices in other modules. To overcome these problems, a bidirectional buck-boost converter with an integrated magnetic device operating for a charge-balancing circuit is proposed. The proposed circuit has multiple secondary rectifiers with inductors sharing a single magnetic core, which works as an inductor for the main bidirectional charger/discharger of the energy storage. The secondary rectifiers operate as a cell-balancing circuit for both energy storage and the series-connected multiple outputs of the module-integrated converter. The operating principle of the cell-balancing power conversion circuit and the power stage design are presented and validated by PSIM simulation for analysis. A hardware prototype with equivalent photovoltaic modules is implemented for verification. The results verify that the modularized photovoltaic power conversion system in the output series with an energy storage successfully works with the proposed low-cost bidirectional buck-boost converter comprising a single magnetic device.