• Title/Summary/Keyword: PV current

Search Result 495, Processing Time 0.042 seconds

Implementation of Current Control Type Inverter for using Power Conditioning of Grid-connective Power System (계통의 Power Conditioning용 전류제어형 인버터의 구현)

  • Lee S. R.;Ko S. H.;Kim S. S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.226-229
    • /
    • 2003
  • Increasing of the use nonlinear power electronics equipments, power conditioning systems have been researched and developed for many years to compensate the harmonic disturbances and the reactive power. The main function of power conditioning systems is to reduce harmonic distortions, since extensive surveys quantify the problems associated with electric networks having non-linear loads. The main function of power conditioner compensates the current instead of the voltage. Therefore the inverter used in power conditioner is mostly current controlled type. In this paper, the proposed current control algorithm is analysed and discussed about how to design the controller which can apply power conditioning operation for grid-connective PV power system. And also proposed control system. To verify the proposed current control algorithm, a comprehensive evaluation with theoretical analysis, simulation, experiment results is presented.

  • PDF

The Study on Thermal Shock Test Characteristics of Solar Cell for Long-term Reliability Test (장기 신뢰성 평가를 위한 태양전지의 열충격 시험 특성에 관한 연구)

  • Kang, Min-Soo;Kim, Do-Seok;Jeon, Yu-Jae;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • This study has been performed Thermal Shock test for analyze the cause of Power drop in PV(Photovoltaic) Module. Thermal Shock test condition was performed with temperature range from $-40^{\circ}C{\sim}85^{\circ}C$. One cycle time is 30min. which are consist of low and high temperature 15min. each other. The test was performed with total 500cycles. EL, I-V were conducted every 100cycle up to 500cycles. Mono Cell resulted in 8% Power drop rates in Bare Cell and 9% in Solar Cell. In the case of Multi Cell resulted in 6% Power drop rates in Bare Cell and 13% in Solar Cell. After Thermal Shock test, Solar Cell's Power drop resulted from surface damages, but in the case of Bare Cell's Power drop had no surface damages. Therefore, Bare Cell's Power drop was confirmed as according to leakage current increase by analysis of Fill Factor after Thermal Shock test. Also, Solar Cell's Power drop rates are higher than that of Bare Cell because of surface damages and consuming electric power increase. From now on, it should be considered that analyzed the reasons of Fill Factor decrease and irregular Power drop in PV module and Cell level using cross section, various conditions and test methods.

Stand-Alone PV System by Parallel Operation Control of Current-Source Inverter without Battery (전류원 인버터의 병렬운전에 의한 축전지 없는 태양광 시스템의 구성)

  • 박성준;김종달
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.6
    • /
    • pp.291-297
    • /
    • 2003
  • This paper presents a current-source-inverter based on a buck-boost configuration and its application for residential photovoltaic system. The proposed circuit has five switches. Among them, only one switch acts as chopping, and the other determine the polarity of output; therefore, it can reduce the switching loss. Because the input inductor current is operated on the discontinuous conduction mode, high power factor can be achieved without additional input current controller. So the overall system shows a simple structure. The operational modes are analysed in depth, and then it was verified through the experimental results using a 150 [W] prototype equipped with digital signal processor TMS320F241.

Study on MPPT controller using limit cycle (리미트 사이클을 이용한 MPPT 제어기에 대한 연구)

  • Kang Taekyung;Koh Kanghoon;Kwon Soonkurl;Suh Kiyoung;Nakaoka Mutsuo;Lee Hyunwoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.160-163
    • /
    • 2005
  • This paper proposes a simple MPPT control scheme of a Current-Control-Loop Error system Based that can be obtains a lot of advantage to compare with another digital control method, P&O and IncCond algorithm, that is applied mostly a PV system. An existent method is needed an expensive processor such as DSP that calculated to change the measure power of a using current and voltage sensor at the once. Therefore, it is applied a small home power generation system that required many expenses. But, a proposed method is easy to solve the cost reduction and power unbalance problems that it is used by control scheme to limit error of a current control of common sensor. This proposed algorithm had verified through a simulation and an experiment on battery charger using PIC that is the microprocessor of a low price.

  • PDF

Islanding Prevention Method for Photovoltaic System by Harmonic Injection Synchronized with Exciting Current Harmonics of Pole Transformer

  • Yoshida, Yoshiaki;Fujiwara, Koji;Ishihara, Yoshiyuki;Suzuki, Hirokazu
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.331-338
    • /
    • 2014
  • When large penetration of the distributed generators (DGs) such as photovoltaic (PV) systems is growing up in grid system, it is important to quickly prevent islanding caused by power system fault to ensure electrical safety. We propose a novel active method for islanding prevention by harmonic injection synchronized with the exciting current harmonics of the pole transformer to avoid mutual interference between active signals. We confirm the validity of the proposed method by performing the basic tests of islanding by using a current source superimposed the harmonic active signal. Further, we carry out the simulation using PSCAD/EMTDC, and verify the fast islanding detection.

Vector Control of Induction Motor Drive Using Photovoltaic Generation (태양광 발전을 이용한 유도전동기 드라이브의 벡터제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Jung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.307-310
    • /
    • 2008
  • This paper is proposed the vector control of 3-phase induction motor drive system by photovoltaic generation. For performance of vector control using a current control voltage source inverter(CC-VSI). CC-VSI is controlled by torque and flux producing component of motor current, relating with current and voltage value of photovoltaic arrays at maximum power point that varies follow different level of insolation. The MPPT using a DC-DC converter controlled the duty cycle to track maximum power from PV under different insolation conditions. The simulation results are shown that the characteristics and performance of drive system, which varies as each conditions of light by expresses in voltage($V_{dq}$), current($I_{dq}$), speed of motor and torque.

  • PDF

Interface between Photovoltaic System and Utility Line using Current-Source PWM Inverter (전류원형 PWM 인버터를 이용한 태양광 시스템과 계통 연계를 위한 연구)

  • Kang, Feel-Soon;Park, Sung-Jun;Park, Han-Woong;Kim, Cheul-U
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.57-61
    • /
    • 2002
  • This paper presents a current-source-inverter based on a buck-boost configuration and its application for residential photovoltaic system. The proposed circuit has five switches. Among them, only one switch acts as chopping, and the other determine the polarity of output; therefore, it can reduce the switching loss. Because the input inductor current is operated on the discontinuous conduction mode, high power factor can be achieved without additional input current controller. So the overall system shows a simple structure. The operational modes are analysed in depth, and then it was verified through the experimental results using a 150 W prototype.

  • PDF

Digital Switching Control Method for Current shaping of Single Phase Flyback Inverter for Photovoltaic AC Modules (PV-AC 모듈형 단상 플라이백 인버터의 출력 전류 품질 보정을 위한 디지털 스위칭 제어기법)

  • Noh, Yong-Su;Lim, Sung-Bum;Ji, Young-Hyok;Jung, Doo-Yong;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.47-48
    • /
    • 2012
  • In generally, grid connected single-phase flyback inverter is operated as boundary or discontinuous conduction mode. However, the flyback inverter can be operated in continuous conduction mode (CCM) due to its operating conditions in spite of it is designed to operate under boundary or discontinuous conduction mode. This situation causes unintended distortion to output current. In this paper, a current shaping method on unfolding bridge to reduce the output current distortion.

  • PDF

The Profitability Analysis of BESS Installation with PV Generation under RPS (RPS 제도 하에서의 태양광발전 연계형 배터리시스템 수익분석 방법에 관한 연구)

  • Kim, Chang-Soo;Yoo, Tae-Hyun;Rhee, Chang-Ho
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.107-117
    • /
    • 2017
  • Since South Korea started to apply Renewable Portfolio Standard (RPS) in 2012, there have been huge investment for deploying renewable technologies. Recently, the government determined to incentivize battery energy storage system(BESS) with renewable generations in order to induce the improvement of dispatching capability. In this paper, the annual pattern of PV generation based on actual generation data in South Korea is analyzed and the duration curve of capacity factor is proposed in order to provide the simplified analyzing methodology of present support policy for additional BESS installation for decision maker who is responsible for supply and demand planning. With suggested methodology, the range of appropriate BESS size with respect to the variation of system marginal price(SMP) and renewable energy certificate(REC) price can be derived briefly, and decision makers easily evaluate the effect of support scheme. Current policy for BESS installation support present additional BESS-related installation policy may give incentives to developers partially, however, the dependence between BESS size and benefit components (SMP and REC) can limit the deployment of the various portfolios of the BESS. Therefore, when improving the current policy in future, addressing the dependence between the technical aspects of battery size and the benefit components separately by the technical and economical parts is needed to set the suitable compensation rules for the renewable generation and BESS.

Low Power-loss Current Measurement Technique Using Resistive Sensor and Bypass Switch (바이패스 스위치와 저항센서를 이용한 저손실 전류 측정방법)

  • Lee, Hwa-Seok;Thayalan, I. Daniel Thena;Park, Joung-Hu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.416-422
    • /
    • 2012
  • This paper proposes a low power-loss current measurement using a resistor and bypass switch. Conventional current sensing method using a resistor has a disadvantage of power loss which degrades the efficiency of the entire systems. On the other hand, proposed measurement technique operating with bypass-switch connected in parallel with sensing resistor can reduce power loss significantly the current sensor. The propose measurement works for discrete-time sampling of current sensing. Even while the analog-digital conversion does not occur at the controller, the sensing voltage across the sensor still causes ohmic conduction loss without information delivery. Hence, the bypass switch bypasses the sensing current with a small amount of power loss. In this paper, a 90[W] prototype hardware has been implemented for photovoltaic MPPT experimental verification of the proposed low power-loss current measurement technique. From the results, it can be seen that PV power observation is successfully done with the proposed method.