• Title/Summary/Keyword: PV Modules

Search Result 330, Processing Time 0.026 seconds

The Simplified Pre-Estimation Model Development of a BIPV Generation Rate by the District Division (지역 구분을 통한 약식 BIPV 발전량 예측 모델 개발)

  • Choi, Won-Ki;Oh, Min-Seok;Shin, Woo-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.2
    • /
    • pp.19-29
    • /
    • 2016
  • Whilst there are growing interests in pursuing energy efficiency and zero-energy buildings in built environment, it is widely recognised that Building-Integrated Photovoltaic (BIPV) is one of the most promising and required technologies to achieve these goals in recent years. Although BIPV is a broadly utilized technique in variety of fields in built environments, it is required that generation of BIVP should be analysed and calculated by external specialists. The aim of this research is to focus on developing a new diagram for prediction of the pre-estimation model in early design stage to harness solar radiation data, PV types, slopes, azimuth and so forth. The results of this study show as follows: 1) We analysed 162 districts in a national level and the examined areas were categorised into five zones. The standard deviation of the results was 2.9 per cent; 2) The increased value of solar radiation on a vertical plane in five categorised zones was 42kWh/m3, and the result was similar to the average value of 43.8kWh/m3; and 3) The pre-estimation of diagram was developed based on the categorisation of zones and azimuth as well as the results of the developed diagram showed little difference compared to the previously utilised method. The suggested diagram in this paper will contribute to estimate BIPV without any external contribution to calculate the value. Even though the result of this study shows little difference, it is required to investigate a number of different variables such as BIPV types, modules, slope angle and so forth in order to develop an integrated pre-estimation diagram.

PID Recovery Characteristics of Photovoltaic Modules in Various Environmental Conditions (다양한 환경조건에서 태양전지모듈의 PID회복특성)

  • Lee, Eun-Suk;Jung, Tea-Hee;Go, Seok-Hwan;Ju, Young-Chul;Chang, Hyo Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.57-65
    • /
    • 2015
  • The Potential Induced Degradation(PID) in PV module mainly affected by various performance conditions such as a potential difference between solar cell and frame, ambient temperature and relative humidity. The positive charges as sodium ions in front glass reach solar cell in module by a potential difference and are accumulated in the solar cell. The ions accelerate the recombination of generation electrons within solar cell under illumination, which reduces the entire output of module. Recently, it was generally known that PID generation is suppressed by controlling the thickness of SiNx AR coating layer on solar cell or using Sodium-free glass and high resistivity encapsulant. However, recovery effects for module with PID are required, because those methods permanently prevent generating PID of module. PID recovery method that voltage reversely applies between solar cell and frame contract to PID generation begins to receive attention. In this paper, PID recovery tests by using voltage under various outdoor conditions as humidity, temperature, voltage are conducted to effectively mitigate PID in module. We confirm that this recovery method perfectly eliminates PID of solar cell according to repeative PID generation and recovery as well as the applied voltage of three factors mainly affect PID recovery.

The First High Solar Concentrator System Performance Test in Korea

  • Chung, Kyung-Yul;Kang, Sung-Won;Kim, Yong-Sik;Sim, Chang-Ho;Jeong, Nam-Young;Park, Chang-Dae;Ryu, Keel-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.876-884
    • /
    • 2012
  • The worldwide CPV(Concentrated Photo Voltaic) market has been increased rapidly due to the increase in large-scale PV(Photo Voltaic) plants which are situated in sun-rich areas with either a Mediterranean or equatorial-type climate. CPV systems are arguably some of the most important devices in the production of electricity within regions with a sun-rich climate, particularly those which benefit from abundant direct solar irradiation. We have developed a 500X CPV module with rated power of 170Wp. The CPV module must satisfy the constraint of having a sensitive tracking accuracy due to the limited tolerance of the acceptance angle in intrinsic optical design. In this study, the module's acceptance angle used was designed with a tolerance angle of ${\pm}1^{\circ}$ in the secondary optics design. In general, non-concentrated module type 2-axis trackers have a tolerance angle larger than ${\pm}1^{\circ}$ due to standard silicon-type modules which are insensitive to the tracking accuracy of the sun. They have a tolerance angle of ${\pm}2{\sim}4^{\circ}$, which fails to exert a significant influence on the performance of the module. This paper provides a study of an experimental variation of the efficiency of the CPV module in terms of its tracking accuracy. Also, the performance of the module is studied from the perspective of temperature and direct irradiation.

Coating Effect of Molding Core Surface by DLC and Re-Ir Coating (DLC 및 Re-Ir 코팅에 의한 성형용 코어면의 코팅 효과)

  • Kim, Hyun-Uk;Cha, Du-Hwan;Lee, Dong-Kil;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.51-56
    • /
    • 2009
  • Recently, with the increasing lightness and miniaturization of high resolution camera phones, the demand for aspheric glass lens has increased because plastic and spherical lens are unable to satisfy the required performance. An aspheric glass lens is fabricated by the high temperature and pressure molding using a tungsten carbide molding core, so precision grinding and coating technology for the molding core surface are required. This study investigates the effect of diamond-like carbon (DLC) and rhenium-iridium (Re-Ir) coating For aspheric molding core surface. The grinding conditions of the tungsten carbide molding core were obtained by design of experiments (DOE) for application in the ultra precision grinding process of the tungsten carbide molding core of the aspheric glass lens used in 5 megapixel, $4{\times}$ zoom camera phone modules. A tungsten carbide molding core was fabricated under this grinding condition and coated with the DLC and Re-Ir coating. By measurements, the effect of DLC and Re-Ir coating on the form accuracy and surface roughness of molding coer was evaluated.

Energy Balance and Constraints for the Initial Sizing of a Solar Powered Aircraft (태양광 추진 항공기의 초기 사이징을 위한 에너지 균형 및 구속조건 연구)

  • Hwang, Ho-Yon;Nam, Tae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.523-535
    • /
    • 2012
  • Solar powered aircraft are becoming more and more interesting for future long endurance missions at hight altitudes, because they could provide surveillance, earth monitoring, telecommunications, etc. without any atmospheric pollution and hopefully in the near future with competitive costs compared with satellites. However, traditional aircraft sizing methods currently employed in the conceptual design phase are not immediately applicable to solar powered aircraft. Hence, energy balance and constraint analyses were performed to determine how various power system components effect the sizing of a solar powered long endurance aircraft. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. To verify current research results, these new sizing methods were applied to HALE aircraft and results were presented.

A Study on the Durability Complement of Lightweight Photovoltaic Module (경량화 태양광 모듈의 내구성 보완에 관한 연구)

  • Jeong, Taewung;Park, Min-Joon;Kim, Hanjun;Song, Jinho;Moon, Daehan;Hong, Kuen Kee;Jeong, Chaehwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.110-114
    • /
    • 2021
  • In this study, we fabricated light-weight solar module for various applications such as building integrated photovoltaics (BIPV), vehicles, trains, etc. Ethylene tetra fluoro ethylene (ETFE) film was applied as a material to replace the cover glass, which occupies more than 65% of the weight of the PV module. Glass fiber reinforced plastic (GRP) was applied to the ones with a low durability by replacing the cover glass to ETFE. Moreover, to achieve a high solar power conversion in this study, we applied a shingled design to weight reduced solar modules. The shingled module with GRP shows 183.7 W of solar-to-power conversion, and the output reduction rate after weight load test was 1.14%.

Characteristics of Rhenium-Iridium coating thin film on tungsten carbide by multi-target sputter

  • Cheon, Min-Woo;Kim, Tae-Gon;Park, Yong-Pil
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.328-331
    • /
    • 2012
  • With the recent development of super-precision optical instruments, camera modules for devices, such as portable terminals and digital camera lenses, are increasingly being used. Since an optical lens is usually produced by high-temperature compression molding methods using tungsten carbide (WC) alloy molding cores, it is necessary to develop and study technology for super-precision processing of molding cores and coatings for the core surface. In this study, Rhenium-Iridium (Re-Ir) thin films were deposited onto a WC molding core using a sputtering system. The Re-Ir thin films were prepared by a multi-target sputtering technique, using iridium, rhenium, and chromium as the sources. Argon and nitrogen were introduced through an inlet into the chamber to be the plasma and reactive gases. The Re-Ir thin films were prepared with targets having a composition ratio of 30 : 70, and the Re-Ir thin films were formed with a 240 nm thickness. Re-Ir thin films on WC molding core were analyzed by scanning electron microscope (SEM), atomic force microscope (AFM), and Ra (the arithmetical average surface roughness). Also, adhesion strength and coefficient friction of Re-Ir thin films were examined. The Re-Ir coating technique has received intensive attention in the coating processes field because of promising features, such as hardness, high elasticity, abrasion resistance and mechanical stability that result from the process. Re-Ir coating technique has also been applied widely in industrial and biomedical applications. In this study, WC molding core was manufactured, using high-performance precision machining and the effects of the Re-Ir coating on the surface roughness.

Change of Amount of Power and Utilization Rate for Photo-Voltaic System (태양광 발전 시스템의 발전량 및 이용률 변화)

  • Mi-Yong Hwang;Soon-Hyung Lee;Yong-Sung Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.403-407
    • /
    • 2023
  • In this paper, in order to investigate the efficiency of solar power generation system operation, we have studied operation cases such as generation amount, utilization rate, and generation time, and the following conclusions were obtained. The amount of power generation in 2017 was 1,311.48 MWh, and the amount of power generation in 2018 was 1,226.03 MWh. In 2021, 1,184.28 MWh was generated, and 90.30% compared to 2017, and the amount of power generation decreased by 1.94% every year. The deterioration of photovoltaic modules could be seen as one cause of the decrease in power generation. 1,977.74 MWh was generated in the spring, and 1,621.77 MWh was generated in the summer. In addition, 1,478.87 MWh was generated in the fall, and 1,110.55 MWh was generated in the winter, showing a lot of power generation in the order of spring, summer, fall, and winter. From 2017 to 2022, the seasonal utilization rate, daily power generation time, and daily power generation were investigated, and it could be seen that the spring utilization rate varies from 19.29% to 16.99%. It could be seen that the daily generation time in winter decreased from 2.67 hours to 2.13 hours, and in spring it generated longer than spring from 4.63 hours to 4.08 hours. In addition, the daily power generation in winter also decreased from 2.67 MWh to 2.13 MWh, and in spring it decreased from 4.63 MWh to 4.08 MWh, but it could be seen that it is more than in winter.

A Study on Correlation between Busbar Electrodes of Heterojunction Technology Solar Cells and the Peel Strength (실리콘 이종접합 태양전지의 버스바 전극 두께와 접합강도의 상관관계)

  • Da Yeong Jun;Jiyeon Moon;Godeung Park;Zulmandakh Otgongerel;Hyeryeong Nam;Oryeon Kwon;Hyunsoo Lim;Sung Hyun Kim
    • Current Photovoltaic Research
    • /
    • v.11 no.2
    • /
    • pp.44-48
    • /
    • 2023
  • In heterojunction technology (HJT) solar cells, low-temperature curing paste is used because the passivation layer deteriorates at high temperatures of 200℃ or higher. However, manufacturing HJT photovoltaic (PV) modules is challenging due to the weak peel strength between busbar electrodes and cells after soldering process. For this issue, the electrode thicknesses of the busbars of the HJT solar cell were analyzed, and the peel strengths between electrodes and wires were measured after soldering using an infrared (IR) lamp. As a result, the electrodes printed by the screen printing method had a difference in thickness due to screen mask. Also, as the thickness of the electrode increased, the peel strength of the wire increased.

Development of Solar Concentrator Cooling System (태양광 시스템의 냉각장치 개발)

  • Lee, HeeJoon;Cha, Gueesoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4463-4468
    • /
    • 2014
  • To increase the efficiency of a solar module, the development of solar concentrator using a lens or reflection plate is being proceeded actively and the concentrator pursues the a concentration using a lens or an optical device of a concentration rate and designing as a solar tracking system. On the other hand, as the energy density being dissipated as a heat according to the concentration rate increases, the cares should be taken to cool the solar concentrator to prevent the lowering of efficiency of solar cell by the increasing temperature of the solar cell. This study, researched and developed an economical concentrator module system using a low priced reflection optical device. A concentrator was used as a general module to increase the generation efficiency of the solar module and heat generated was emitted by the concentration through the cooling system. To increase the efficiency of the solar concentrator, the cooling system was designed and manufactured. The features of the micro cooling system (MCS) are a natural circulation method by the capillary force, which does not require external power. By using the potential heat in the case of changing the fluid, it is available to realize high performance cooling. The 117W solar modules installed on the reflective plate and the cooling device in the cooling module and the module unit was not compared. The cooling device was installed in the module resulted in a 28% increase in power output.