• 제목/요약/키워드: PTPN2

검색결과 17건 처리시간 0.028초

Inhibition of protein tyrosine phosphatase non-receptor type 2 by PTP inhibitor XIX: Its role as a multiphosphatase inhibitor

  • Le, Hien Thi Thu;Cho, Young-Chang;Cho, Sayeon
    • BMB Reports
    • /
    • 제50권6호
    • /
    • pp.329-334
    • /
    • 2017
  • Protein tyrosine phosphatases (PTPs) play crucial roles in signal transduction and their functional alteration has been detected in many diseases. PTP inhibitors have been developed as therapeutic drugs for diseases that are related to the activity of PTPs. In this study, PTP inhibitor XIX, an inhibitor of CD45 and PTEN, was investigated whether it inhibits other PTPs. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) was selectively inhibited by the inhibitor in a competitive manner. Drug affinity responsive target stability (DARTS) analysis showed that the inhibitor induces conformational changes in PTPN2. Phosphorylation levels of signal transducer and activator of transcription 3 (STAT3) at Tyr-705, a crucial site for STAT3 activation and target site of PTPN2, decreased upon exposure to the inhibitor. Our results suggest that PTP inhibitor XIX might be considered as an effective regulator of PTPN2 for treating diseases related to PTPN2.

Molecular Analysis of the Interaction between Human PTPN21 and the Oncoprotein E7 from Human Papillomavirus Genotype 18

  • Lee, Hye Seon;Kim, Min Wook;Jin, Kyeong Sik;Shin, Ho-Chul;Kim, Won Kon;Lee, Sang Chul;Kim, Seung Jun;Lee, Eun-Woo;Ku, Bonsu
    • Molecules and Cells
    • /
    • 제44권1호
    • /
    • pp.26-37
    • /
    • 2021
  • Human papillomaviruses (HPVs) cause cellular hyperproliferation-associated abnormalities including cervical cancer. The HPV genome encodes two major viral oncoproteins, E6 and E7, which recruit various host proteins by direct interaction for proteasomal degradation. Recently, we reported the structure of HPV18 E7 conserved region 3 (CR3) bound to the protein tyrosine phosphatase (PTP) domain of PTPN14, a well-defined tumor suppressor, and found that this intermolecular interaction plays a key role in E7-driven transformation and tumorigenesis. In this study, we carried out a molecular analysis of the interaction between CR3 of HPV18 E7 and the PTP domain of PTPN21, a PTP protein that shares high sequence homology with PTPN14 but is putatively oncogenic rather than tumor-suppressive. Through the combined use of biochemical tools, we verified that HPV18 E7 and PTPN21 form a 2:2 complex, with a dissociation constant of 5 nM and a nearly identical binding manner with the HPV18 E7 and PTPN14 complex. Nevertheless, despite the structural similarities, the biological consequences of the E7 interaction were found to differ between the two PTP proteins. Unlike PTPN14, PTPN21 did not appear to be subjected to proteasomal degradation in HPV18-positive HeLa cervical cancer cells. Moreover, knockdown of PTPN21 led to retardation of the migration/invasion of HeLa cells and HPV18 E7-expressing HaCaT keratinocytes, which reflects its protumor activity. In conclusion, the associations of the viral oncoprotein E7 with PTPN14 and PTPN21 are similar at the molecular level but play different physiological roles.

Low Expression of Tyrosine-protein Phosphatase Nonreceptor Type 12 is Associated with Lymph Node Metastasis and Poor Prognosis in Operable Triple-negative Breast Cancer

  • Wu, Min-Qing;Hu, Pan;Gao, Jie;Wei, Wei-Dong;Xiao, Xiang-Sheng;Tang, Hai-Lin;Li, Xing;Ge, Qi-Dong;Jia, Wei-Hua;Liu, Ren-Bin;Xie, Xiao-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.287-292
    • /
    • 2013
  • Background: Low tyrosine-protein phosphatase nonreceptor type 12 (PTPN12) expression may be associated with breast cancer growth, proliferation, and metastasis. However, the prognostic value of PTPN12 in breast cancer has not been clearly identified. Patients and Methods: 51 triple-negative breast cancer (TNBC) patients and 83 non-TNBC patients with a histopathology diagnosis from October 2001 to September 2006 were included in this study. Immunohistochemical staining for PTPN12 on tissue microarrays was conducted. Results: High PTPN12 expression was seen in 39.2% of TNBC and 60.2 % of non-TNBC cases. Low PTPN12 expression was associated with lymph node status (p = 0.002) and distant metastatic relapse (p = 0.002) in TNBC patients. Similarly, low PTPN12 expression in non-TNBC patients was significantly correlated with lymph node status (p = 0.002), stage (p = 0.002) and distant metastatic relapse (p = 0.039). The high PTPN12 expression group was associated with longer DFS and OS compared with low PTPN12 expression group only in TNBC cases (p = 0.005, p = 0.015), according to univariate Cox regression analysis. Conclusion: These findings provide evidence that low expression of PTPN12 is associated with worse prognosis and may be used as a potential prognostic biomarker in TNBC patients.

Comparison of effectiveness of growth hormone therapy according to disease-causing genes in children with Noonan syndrome

  • Jo, Kyo Jin;Kim, Yoo Mi;Yoon, Ju Young;Lee, Yeoun Joo;Han, Young Mi;Yoo, Han-Wook;Kim, Hyang-Sook;Cheon, Chong Kun
    • Clinical and Experimental Pediatrics
    • /
    • 제62권7호
    • /
    • pp.274-280
    • /
    • 2019
  • Purpose: To analyze the growth response to growth hormone (GH) therapy in prepubertal patients with Noonan syndrome (NS) harboring different genetic mutations. Methods: Twenty-three patients with prepubertal NS treated at Pusan National University Children's Hospital between March 2009 and July 2017 were enrolled. According to the disease-causing genes identified, the patients with NS were divided into 4 groups. Three groups were positive for mutations of the PTPN11, RAF1, and SOS1 genes. The five genes undetected (FGU) group was negative for PTPN11, RAF1, SOS1, KRAS, and BRAF gene mutations. The influence of genotype was retrospectively analyzed by comparing the growth parameters after GH therapy. Results: The mean chronological age at the start of GH treatment was $5.85{\pm}2.67years$. At the beginning of the GH treatment, the height standard deviation score (SDS), growth velocity (GV), and lower levels of insulin-like growth factor-1 (IGF)-1 levels were not statistically different among the groups. All the 23 NS patients had significantly increased height SDS and serum IGF-1 level during the 3 years of treatment. GV was highest during the first year of treatment. During the 3 years of GH therapy, the PTPN11, RAF1, and SOS1 groups showed less improvement in height SDS, IGF-1 SDS, and GV, and less increase in bone age-to-chronological age ratio than the FGU group. Conclusion: The 3-year GH therapy in the 23 prepubertal patients with NS was effective in improving height SDS, GV, and serum IGF-1 levels. The FGU group showed a better response to recombinant human GH therapy than the PTPN11, RAF1, and SOS1 groups.

Noonan syndrome and RASopathies: Clinical features, diagnosis and management

  • Lee, Beom Hee;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • 제16권1호
    • /
    • pp.1-9
    • /
    • 2019
  • Noonan syndrome (NS) and NS-related disorders (cardio-facio-cutaneous syndrome, Costello syndrome, NS with multiple lentigines, or LEOPARD [lentigines, ECG conduction abnormalities, ocular hypertelorism, pulmonic stenosis, abnormal genitalia, retardation of growth and sensory neural deafness] syndrome) are collectively named as RASopathies. Clinical presentations are similar, featured with typical facial features, short stature, intellectual disability, ectodermal abnormalities, congenital heart diseases, chest & skeletal deformity and delayed puberty. During past decades, molecular etiologies of RASopathies have been growingly discovered. The functional perturbations of the RAS-mitogen-activated protein kinase pathway are resulted from the mutation of more than 20 genes (PTPN11, SOS1, RAF1, SHOC2, BRAF, KRAS, NRAS, HRAS, MEK1, MEK2, CBL, SOS2, RIT, RRAS, RASA2, SPRY1, LZTR1, MAP3K8, MYST4, A2ML1, RRAS2). The PTPN11 (40-50%), SOS1 (10-20%), RAF1 (3-17%), and RIT1 (5-9%) mutations are common in NS patients. In this review, the constellation of overlapping clinical features of RASopathies will be described based on genotype as well as their differential diagnostic points and management.

Monitoring trafficking and expression of hemagglutinin-tagged transient receptor potential melastatin 4 channel in mammalian cells

  • Eun Mi Hwang;Bo Hyun Lee;Eun Hye Byun;Soomin Lee;Dawon Kang;Dong Kun Lee;Min Seok Song;Seong-Geun Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권4호
    • /
    • pp.417-426
    • /
    • 2023
  • The TRPM4 gene encodes a Ca2+-activated monovalent cation channel called transient receptor potential melastatin 4 (TRPM4) that is expressed in various tissues. Dysregulation or abnormal expression of TRPM4 has been linked to a range of diseases. We introduced the hemagglutinin (HA) tag into the extracellular S6 loop of TRPM4, resulting in an HA-tagged version called TRPM4-HA. This TRPM4-HA was developed to investigate the purification, localization, and function of TRPM4 in different physiological and pathological conditions. TRPM4-HA was successfully expressed in the intact cell membrane and exhibited similar electrophysiological properties, such as the current-voltage relationship, rapid desensitization, and current size, compared to the wild-type TRPM4. The presence of the TRPM4 inhibitor 9-phenanthrol did not affect these properties. Furthermore, a wound-healing assay showed that TRPM4-HA induced cell proliferation and migration, similar to the native TRPM4. Co-expression of protein tyrosine phosphatase, non-receptor type 6 (PTPN6 or SHP1) with TRPM4-HA led to the translocation of TRPM4-HA to the cytosol. To investigate the interaction between PTPN6 and tyrosine residues of TRPM4 in enhancing channel activity, we generated four mutants in which tyrosine (Y) residues were substituted with phenylalanine (F) at the N-terminus of TRPM4. The YF mutants displayed properties and functions similar to TRPM4-HA, except for the Y256F mutant, which showed resistance to 9-phenanthrol, suggesting that Y256 may be involved in the binding site for 9-phenanthrol. Overall, the creation of HA-tagged TRPM4 provides researchers with a valuable tool to study the role of TRPM4 in different conditions and its potential interactions with other proteins, such as PTPN6.

Protein Tyrosine Phosphatase N1 Gene Variants Associated with Type 2 Diabetes Mellitus and Its Related Phenotypes in the Korean Population

  • Hong, Kyung-Won;Jin, Hyun-Seok;Lim, Ji-Eun;Ryu, Ha-Jung;Ahn, Youn-Jhin;Lee, Jong-Young;Han, Bok-Ghee;Shin, Hyoung-Doo;Cho, Nam-Han;Shin, Chol;Woo, Jeong-Taek;Park, Hun-Kuk;Oh, Berm-Seok
    • Genomics & Informatics
    • /
    • 제6권3호
    • /
    • pp.99-109
    • /
    • 2008
  • Protein phosphorylation at tyrosine residues is a key regulatory event that modulates insulin signal transduction. We studied the PTPN1 gene with regard to susceptibility to Korean type 2 diabetes mellitus (T2DM) and its related quantitative traits. A total of seven SNPs [g.36171G>A (rs941798), g.58166G>A (rs3787343), g.58208A>G (rs2909270), g.64840C>T (rs754118), g.69560C>G (rs6020612), g.69866G>A (rs718050), and g.69934T>G (rs3787343)] were selected based on frequency (>0.05), linkage disequilibrium (LD) status, and haplotype tagging status. We studied the seven SNPs in 483 unrelated patients with type 2 diabetes (age: $64{\pm}2.8$ years, onset age: $56{\pm}8.1$ years; 206 men, 277 women) and 1138 nondiabetic control subjects (age: $64{\pm}2.9$; 516 men, 622 women). The SNP rs941798 had protective effects against T2DM with an odds ratio of 0.726 (C.I. $0.541{\sim}0.975$) and p-value=0.034, but none of the remaining six SNPs was associated with T2DM. Also, rs941798 was associated with blood pressure, HDL cholesterol, insulin sensitivity. rs941798 also has been associated with T2DM in previous reports of Caucasian-American and Hispanic-American populations. This is the first report that shows an association between PTPN1 and T2DM in the Korean as well as Asian population.

Tacrolimus Differentially Regulates the Proliferation of Conventional and Regulatory CD4+ T Cells

  • Kogina, Kazue;Shoda, Hirofumi;Yamaguchi, Yumi;Tsuno, Nelson H;Takahashi, Koki;Fujio, Keishi;Yamamoto, Kazuhiko
    • Molecules and Cells
    • /
    • 제28권2호
    • /
    • pp.125-130
    • /
    • 2009
  • Tacrolimus is a widely used T cell targeted immunosuppressive drug, known as a calcineurin inhibitor. However, the exact pharmacological effects of tacrolimus on $CD4^+$ T cells have yet to be elucidated. This study investigated the effects of tacrolimus on $CD4^+$ T cell subsets. Mouse or human $CD4^+$ T cells were cultured with immobilized anti-CD3/CD28 antibodies in the presence of tacrolimus. The cell division of $CD4^+$ T cells was analyzed using a flow cytometer according to the expression of Foxp3. The gene expression patterns of tacrolimus-exposed T cells were examined by quantitative PCR. In the case of conventional $CD4^+$ T cells (Tconv cells), tacrolimus inhibited T cell receptor stimulation-induced cell division. In contrast, the cell division of regulatory $CD4^+$ T cells (Treg cells) was even promoted in the presence of tacrolimus, especially in humans. Tacrolimus did not promote conversion of Tconv to Treg cells in mice. Furthermore, tacrolimus modified the expression levels of Foxp3-regulated T cell receptor signal related-genes, PTPN22 and Itk, in human Treg cells. Immunosuppressive effect of tacrolimus may be attributed to the relatively enhanced proliferation of Treg cells in association with altered gene expression levels of TCR signaling molecules.