DOI QR코드

DOI QR Code

Protein Tyrosine Phosphatase N1 Gene Variants Associated with Type 2 Diabetes Mellitus and Its Related Phenotypes in the Korean Population

  • Hong, Kyung-Won (Biomedical Education Center, Department of Biomedical Engineering, School of Medicine, KyungHee University) ;
  • Jin, Hyun-Seok (Biomedical Education Center, Department of Biomedical Engineering, School of Medicine, KyungHee University) ;
  • Lim, Ji-Eun (Biomedical Education Center, Department of Biomedical Engineering, School of Medicine, KyungHee University) ;
  • Ryu, Ha-Jung (Center for Genome Science, National Institute of Health) ;
  • Ahn, Youn-Jhin (Center for Genome Science, National Institute of Health) ;
  • Lee, Jong-Young (Center for Genome Science, National Institute of Health) ;
  • Han, Bok-Ghee (Center for Genome Science, National Institute of Health) ;
  • Shin, Hyoung-Doo (SNP Genetics, Inc.) ;
  • Cho, Nam-Han (Department of Preventive Medicine, Ajou University School of Medicine) ;
  • Shin, Chol (Department of Internal Medicine, Korea University, Ansan Hospital) ;
  • Woo, Jeong-Taek (Department of Endocrinology and Metabolism, KyungHee University Hospital, School of Medicine, KyungHee University) ;
  • Park, Hun-Kuk (Biomedical Education Center, Department of Biomedical Engineering, School of Medicine, KyungHee University) ;
  • Oh, Berm-Seok (Biomedical Education Center, Department of Biomedical Engineering, School of Medicine, KyungHee University)
  • Published : 2008.09.30

Abstract

Protein phosphorylation at tyrosine residues is a key regulatory event that modulates insulin signal transduction. We studied the PTPN1 gene with regard to susceptibility to Korean type 2 diabetes mellitus (T2DM) and its related quantitative traits. A total of seven SNPs [g.36171G>A (rs941798), g.58166G>A (rs3787343), g.58208A>G (rs2909270), g.64840C>T (rs754118), g.69560C>G (rs6020612), g.69866G>A (rs718050), and g.69934T>G (rs3787343)] were selected based on frequency (>0.05), linkage disequilibrium (LD) status, and haplotype tagging status. We studied the seven SNPs in 483 unrelated patients with type 2 diabetes (age: $64{\pm}2.8$ years, onset age: $56{\pm}8.1$ years; 206 men, 277 women) and 1138 nondiabetic control subjects (age: $64{\pm}2.9$; 516 men, 622 women). The SNP rs941798 had protective effects against T2DM with an odds ratio of 0.726 (C.I. $0.541{\sim}0.975$) and p-value=0.034, but none of the remaining six SNPs was associated with T2DM. Also, rs941798 was associated with blood pressure, HDL cholesterol, insulin sensitivity. rs941798 also has been associated with T2DM in previous reports of Caucasian-American and Hispanic-American populations. This is the first report that shows an association between PTPN1 and T2DM in the Korean as well as Asian population.

Keywords

References

  1. Benchabane, H., and Wrana, J.L. (2003). GATA- and Smad1-dependent enhancers in the Smad7 gene differentially interpret bone morphogenetic protein concentrations. Mol. Cell. Biol . 23, 6646-6661. https://doi.org/10.1128/MCB.23.18.6646-6661.2003
  2. Bento, J.L., Palmer, N.D., Mychaleckyj, J.C., Lange, L.A., Langefeld, C.D., Rich, S.S., Freedman, B.I., and Bowden, D.W. (2004). Association of protein tyrosine phosphatase 1B gene polymorphisms with type 2 diabetes. Diabetes 53, 3007-3012 https://doi.org/10.2337/diabetes.53.11.3007
  3. Bowden, D.W., Sale, M., Howard, T.D., Qadri, A., Spray, B.J., Rothschild, C.B., Akots, G., Rich, S.S., and Freedman, B.I. (1997). Linkage of genetic markers on human chromosomes 20 and 12 to NIDDM in Caucasian sib pairs with a history of diabetic nephropathy. Diabetes 46, 882-886 https://doi.org/10.2337/diabetes.46.5.882
  4. Burdon, K.P., Bento, J.L., Langefeld, C.D., Campbell, J.K., Carr, J.J., Wagenknecht, L.M., Herrington, D.M., Freedman, B.I., Rich, S.S., and Bowden, D.W. (2006). Association of protein tyrosine phosphatase-N1 polymorphisms with coronary calcified plaque in the Diabetes Heart Study. Diabetes 55, 651-658 https://doi.org/10.2337/diabetes.55.03.06.db05-0058
  5. Cheng, A., Uetani, N., Simoncic, P.D., Chaubey, V.P., Lee- Loy, A., McGlade, C.J., Kennedy, B.P., and Tremblay, M.L. (2002). Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Dev. Cell 2, 497-503 https://doi.org/10.1016/S1534-5807(02)00149-1
  6. Cheyssac, C., Lecoeur, C., Dechaume, A., Bibi, A., Charpentier, G., Balkau, B., Marre, M., Froguel, P., Gibson, F., and Vaxillaire, M. (2006). Analysis of common PTPN1 gene variants in type 2 diabetes, obesity and associated phenotypes in the French population. BMC Med. Genet. 7, 44 https://doi.org/10.1186/1471-2350-7-44
  7. Collaku, A., Rankinen, T., Rice, T., Leon, A.S., Rao, D.C., Skinner, J.S., Wilmore, J.H., and Bouchard, C. (2004). A genome-wide linkage scan for dietary energy and nutrient intakes: the Health, Risk Factors, Exercise Training, and Genetics (HERITAGE) Family Study. Am. J. Clin. Nutr. 79, 881-886 https://doi.org/10.1093/ajcn/79.5.881
  8. Di Paola, R., Frittitta, L., Miscio, G., Bozzali, M., Baratta, R., Centra, M., Spampinato, D., Santagati, M.G., Ercolino, T., Cisternino, C., Soccio, T., Mastroianno, S., Tassi, V., Almgren, P., Pizzuti, A., Vigneri, R., and Trischitta, V. (2002). A variation in 3' UTR of hPTP1B increases specific gene expression and associates with insulin resistance. Am. J. Hum. Genet. 70, 806-812 https://doi.org/10.1086/339270
  9. Dong, C., Wang, S., Li, W.D., Li, D., Zhao, H., and Price, R.A. (2003). Interacting genetic loci on chromosomes 20 and 10 influence extreme human obesity. Am. J. Hum. Genet. 72, 115-124 https://doi.org/10.1086/345648
  10. Eberle, M. A., and Kruglyak, L. (2000). An analysis of strategies for discovery of single-nucleotide polymorphisms. Genet. Epidemiol. 19, Suppl. 1, S29-35 https://doi.org/10.1002/1098-2272(2000)19:1+<::AID-GEPI5>3.0.CO;2-P
  11. Echwald, S.M., Bach, H., Vestergaard, H., Richelsen, B., Kristensen, K., Drivsholm, T., Borch-Johnsen, K., Hansen, T., and Pedersen, O. (2002). A P387L variant in protein tyrosine phosphatase-1B (PTP-1B) is associated with type 2 diabetes and impaired serine phosphorylation of PTP-1B in vitro. Diabetes 51, 1-6 https://doi.org/10.2337/diabetes.51.2007.S1
  12. Elchebly, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Loy, A.L., Normandin, D., Cheng, A., Himms- Hagen, J., Chan, C.C., Ramachandran, C., Gresser, M.J., Tremblay, M.L., and Kennedy, B.P. (1999). Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544-1548 https://doi.org/10.1126/science.283.5407.1544
  13. Evans, J.L., and Jallal, B. (1999). Protein tyrosine phosphatases: their role in insulin action and potential as drug targets. Expert Opin. Investig. Drugs. 8, 139-160 https://doi.org/10.1517/13543784.8.2.139
  14. Florez, J.C., Agapakis, C.M., Burtt, N.P., Sun, M., Almgren, P., Rastam, L., Tuomi, T., Gaudet, D., Hudson, T.J., Daly, M.J., Ardlie, K.G., Hirschhorn, J.N., Groop, L., and Altshuler, D. (2005). Association testing of the protein tyrosine phosphatase 1B gene (PTPN1) with type 2 diabetes in 7,883 people. Diabetes 54, 1884-1891 https://doi.org/10.2337/diabetes.54.6.1884
  15. Forsell, P.A., Boie, Y., Montalibet, J., Collins, S., and Kennedy, B.P. (2000). Genomic characterization of the human and mouse protein tyrosine phosphatase-1B genes. Gene 260, 145-153 https://doi.org/10.1016/S0378-1119(00)00464-9
  16. Goldstein, B.J., Bittner-Kowalczyk, A., White, M.F., and Harbeck, M. (2000). Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein. J. Biol. Chem. 275, 4283-4289 https://doi.org/10.1074/jbc.275.6.4283
  17. Goldstein, B.J., Li, P.M., Ding, W., Ahmad, F., and Zhang, W.R. (1998). Regulation of insulin action by protein tyrosine phosphatases. Vitam. Horm. 54, 67-96 https://doi.org/10.1016/S0083-6729(08)60922-X
  18. Hunt, S.C., Abkevich, V., Hensel, C.H., Gutin, A., Neff, C.D., Russell, D.L., Tran, T., Hong, X., Jammulapati, S., Riley, R., Weaver-Feldhaus, J., Macalma, T., Richards, M.M., Gress, R., Francis, M., Thomas, A., Frech, G.C., Adams, T.D., Shattuck, D., and Stone, S. (2001). Linkage of body mass index to chromosome 20 in Utah pedigrees. Hum. Genet. 109, 279-285 https://doi.org/10.1007/s004390100581
  19. Ji, L., Malecki, M., Warram, J.H., Yang, Y., Rich, S.S., and Krolewski, A.S. (1997). New susceptibility locus for NIDDM is localized to human chromosome 20q. Diabetes 46, 876-881 https://doi.org/10.2337/diabetes.46.5.876
  20. Katz, A., Nambi, S.S., Mather, K., Baron, A.D., Follmann, D.A., Sullivan, G., and Quon M.J. (2000). Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 85, 2402-2410 https://doi.org/10.1210/jc.85.7.2402
  21. Klaman, L.D., Boss, O., Peroni, O.D., Kim, J.K., Martino, J.L., Zabolotny, J.M., Moghal, N., Lubkin, M., Kim, Y.B., Sharpe, A.H., Stricker-Krongrad, A., Shulman, G.I., Neel, B.G., and Kahn, B.B. (2000). Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol. Cell Biol. 20, 5479-5489 https://doi.org/10.1128/MCB.20.15.5479-5489.2000
  22. Klupa, T., Malecki, M.T., Pezzolesi, M., Ji, L., Curtis, S., Langefeld, C.D., Rich, S.S., Warram, J.H., and Krolewski, A.S. (2000). Further evidence for a susceptibility locus for type 2 diabetes on chromosome 20q13.1-q13.2. Diabetes 49, 2212-2216 https://doi.org/10.2337/diabetes.49.12.2212
  23. Kwan, M., Powell, D.R., Nachman, T.Y., and Brown, M.A. (2005). An intron GATA-binding site regulates chromatin accessibility and is essential for IL-4 gene expression in mast cells. Eur. J. Immunol. 35, 1267-1274 https://doi.org/10.1002/eji.200425619
  24. Lembertas, A.V., Perusse, L., Chagnon, Y.C., Fisler, J.S., Warden, C.H., Purcell-Huynh, D.A., Dionne, F.T., Gagnon, J., Nadeau, A., Lusis, A.J., and Bouchard, C. (1997). Identification of an obesity quantitative trait locus on mouse chromosome 2 and evidence of linkage to body fat and insulin on the human homologous region 20q. J. Clin. Invest. 100, 1240-1247 https://doi.org/10.1172/JCI119637
  25. Livak, K.J. (1999). Allelic discrimination using Xuorogenic probes and the 5_nuclease assay. Genet. Anal. 14, 143-149 https://doi.org/10.1016/S1050-3862(98)00019-9
  26. Palmer, N.D., Bento, J.L., Mychaleckyj, J.C., Langefeld, C.D., Campbell, J.K., Norris, J.M., Haffner, S.M., Bergman, R.N., and Bowden, D.W. (2004). Association of protein tyrosine phosphatase 1B gene polymorphisms with measures of glucose homeostasis in Hispanic Americans: the insulin resistance atherosclerosis study (IRAS) family study. Diabetes 53, 3013-3019 https://doi.org/10.2337/diabetes.53.11.3013
  27. Rondinone, C.M., Trevillyan, J.M., Clampit, J., Gum, R. J., Berg, C., Kroeger, P., Frost, L., Zinker, B.A., Reilly, R., Ulrich, R., Butler, M., Monia, B.P., Jirousek, M.R., and Waring, J.F. (2002). Protein tyrosine phosphatase 1B reduction regulates adiposity and expression of genes involved in lipogenesis. Diabetes 51, 2405-2411 https://doi.org/10.2337/diabetes.51.8.2405
  28. Santaniemi, M., Ukkola, O., and Kesaniemi, Y.A. (2004). Tyrosine phosphatase 1B and leptin receptor genes and their interaction in type 2 diabetes. J. Intern. Med. 256, 48-55 https://doi.org/10.1111/j.1365-2796.2004.01339.x
  29. Seely, B.L., Staubs, P.A., Reichart, D.R., Berhanu, P., Milarski, K.L., Saltiel, A.R., Kusari, J., and Olefsky, J.M. (1996). Protein tyrosine phosphatase 1B interacts with the activated insulin receptor. Diabetes 45, 1379-1385 https://doi.org/10.2337/diabetes.45.10.1379
  30. Spencer-Jones, N.J., Wang, X., Snieder, H., Spector, T.D., Carter, N.D., and O'Dell, S.D. (2005). Protein tyrosine phosphatase-1B gene PTPN1: selection of tagging single nucleotide polymorphisms and association with body fat, insulin sensitivity, and the metabolic syndrome in a normal female population. Diabetes 54, 3296-3304 https://doi.org/10.2337/diabetes.54.11.3296
  31. Zabolotny, J.M., Bence-Hanulec, K.K., Stricker-Krongrad, A., Haj, F., Wang, Y., Minokoshi, Y., Kim, Y.B., Elmquist, J.K., Tartaglia, L.A., Kahn, B.B., and Neel, B.G. (2002). PTP1B regulates leptin signal transduction in vivo. Dev. Cell 2, 489-495 https://doi.org/10.1016/S1534-5807(02)00148-X
  32. Zouali, H., Hani, E.H., Philippi, A., Vionnet, N., Beckmann, J.S., Demenais, F., and Froguel, P. (1997). A susceptibility locus for early-onset non-insulin dependent (type 2) diabetes mellitus maps to chromosome 20q, proximal to the phosphoenolpyruvate carboxykinase gene. Hum. Mol. Genet. 6, 1401-1408 https://doi.org/10.1093/hmg/6.9.1401