• Title/Summary/Keyword: PTO driving gear

Search Result 10, Processing Time 0.025 seconds

Evaluation of Tractor PTO Severeness during Rotary Tillage Operation (로타리 경운작업 시 트랙터 PTO 가혹도 평가)

  • Kim, Yong-Joo;Chung, Sun-Ok;Choi, Chang-Hyun;Lee, Dae-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.163-170
    • /
    • 2011
  • Analysis of load on major parts of the tractor power drive line is critical for efficient and optimum design of a tractor. The purpose of this study was to evaluate severeness of the tractor PTO driving axle during rotary tillage operation. First, S-N (stress vs. number of cycle) curve of a PTO driving gear was obtained through the fatigue life test using a PTO dynamometer. Second, PTO severeness was evaluated during rotary tillage operation. Torque measurement system was constructed with strain-gauge sensors to measure torque of a PTO axle, an I/O interface to acquire the sensor signals, and an embedded system to calculate severeness. The severeness of PTO was analyzed using measured torque data during rotary tillage. In the PTO gear life fatigue test, breakage time and bending stress of the gear were measured by tooth widths and torque change during the fatigue life test. The S-N curve showed a good linear relationship between bending stress and number of cycle (life) with a coefficient of determination of 0.97. For PTO severenss evaluation, rotary tillage operations were conducted at two PTO rotational speeds (level-1, level-2) under different paddy and upland field sites with different soil conditions. Results of averaged relative severeness for PTO level-1 and PTO level-2 were 1.96 and 3.34, respectively, at paddy field sites, and they were 1.36 and 2.51, respectively, at upland field sites. The results showed that the PTO driving axle experienced more severe load during rotary tillage at paddy fields than at upland sites, and relative severeness was greater at the higher PTO rotational speed under all of the soil conditions.

Analysis of the load distribution and contact safety factor of PTO gears of a 71 kW class agricultural tractor

  • Baek, Seung-Min;Kim, Wan-Soo;Kim, Yeon-Soo;Lee, Nam-Gyu;Kim, Nam-Hyeok;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.327-335
    • /
    • 2020
  • The purpose of this study was to analyze the load distribution and contact safety factor for the power take off (PTO) gear of a 71 kW class agricultural tractor. In this study, a simulation model of the PTO gear-train was developed using Romax DESGINER. The face load factor and contact safety factor were calculated using ISO 6336:2006. The simulation time was set at 2,736 hours considering the lifetime of the tractor, and the simulation was performed for each PTO gear stage at the engine rated power conditions. As a result of the simulation, the face load factors for the driving gear at the PTO 1st, 2nd and 3rd stages were 1.644, 1.632, and 1.341, respectively. The contact safety factors for the driving gear at the PTO 1st, 2nd and 3rd stages were 1.185, 1.216, and 1.458, respectively. As the PTO gear stage was increased, the face load factor decreased, and the contact safety factor increased. The load distributions for all the PTO gears were concentrated to the right of the tooth width. This causes stress concentrations and shortens the lifespan of the gears. Therefore, it is necessary to improve the face load factor and the contact safety factor with macro-geometry and micro-geometry.

Effects of Design Parameters on Rattle Noise in a Direct Engine-PTO Driveline of Tractors (엔진 직결식 PTO 전동 라인의 주요 설계 변수가 PTO 변속부의 치타음에 미치는 영향)

  • Park Y.J.;Kim K.U.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.4 s.117
    • /
    • pp.323-333
    • /
    • 2006
  • Introduction of a direct engine-PTO driveline to agricultural tractors has reduced production cost and increased transmission efficiency of the PTO driveline. However, this type of PTO driveline has caused a severe rattle noise in the PTO gearbox under idle conditions. This study was conducted to investigate the causes of the rattle noise and the effects of driveline parameters on it. A mathematical model was developed for a direct engine-PTO driveline. The model was proved experimentally to be accurate enough to simulate the dynamic characteristics of the PTO driveline motions. The simulation study showed that the rattle noise was caused by collisions between the driving and driven gears in the PTO gearbox due to velocity variation of the gears, which was induced by torque fluctuations from the engine. It was also found that the rattle noise decreased with the drag torque and mass moment of inertia of the engine flywheel. Smaller mass moment of inertia of the driven gears and backlash also reduced the rattle noise. However, increasing the drag torque and mass moment of the engine flywheel or decreasing the backlash and mass moment of inertia of the driven gears were limited practically by their detrimental effects on transmission efficiency, gear strength and smooth meshing of the gears.

A Study on the Characteristic of Power Transmission by the Power-take-off(P.T.O.) of farm Tractor (Tractor 동력취출장치(P.T.O.)의 동력전달구조에 관한 연구)

  • 송현갑
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.3
    • /
    • pp.3089-3095
    • /
    • 1973
  • The power transmission to the traction devices may be very important for the tractor performance and therefore this system has been studied very much in the past. On the other hand, the PTO(Power-take-off) has been considered as an accessary on the tractor with a few work for its power transmission. Because of increased use of PTO operation in various kind of farming operations in recent years, the function of PTO may become such important as the traction facilities. In this study, the power transmission characteristics of PTO drive was analyzed theoretically and some experimental work was done to study on it. The results of the study are as follows: 1) The most stable condition of PTO work was obtained when the intersection angle of the two curves for driving and driven torques was about ${\pi}/2$. 2) To obtain the most stable operation it is better to use both the speed control and the full control together. 3) Six steps differential gear may not be enough to use the PTO power smoothly. It is thought that the three steps differential gear on the shaft of PTO may be necessary additionally for a smooth operation. 4) When the traction facilities and the PTO are used at the same time, the torque of crank shaft becomes Tt + Tp, and the high efficiency and good stability of word will be obtained with the small variation of driving speed. 5) When the tractor was operated with 75% of the rated horse power and 70% of maximum speed, the best thermal efficiency could be obtained. 6) The most dangerous sound for human occured at the rated speed of PTO and tus it may be necessary to control the dangerous noise.

  • PDF

Evaluation of PTO Severeness for 78 kW-Class Tractor According to Disk Plow Tillage and Rotary Tillage (디스크플라우 및 로타리 작업에 따른 78 kW급 트랙터 PTO 가혹도 평가)

  • Kim, Wan Soo;Kim, Yong Joo;Park, Seong Un;Hong, Soon Jung;Kim, Yeon Soo
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.23-31
    • /
    • 2019
  • The purpose of this study was to evaluate the PTO severeness for an agricultural tractor during disk plow and rotary tillage. The PTO load measurement system was constructed with data acquisition and a PTO torquemeter. Field experiments were conducted at a combination of traveling speed (L3 Low, L3 High) and PTO speed (P1, P2). The load spectrum was generated using the rain-flow counting method, and the SWT method was used to consider the range and mean of the PTO load. The damage sum was calculated by applying a modified miner rule, which is a cumulative damage law. The relative severeness was expressed as the ratio of the lowest damage sum. Relative severeness was higher with the lower PTO gear stage, and higher driving gear stage and it was approximately 40-102 times higher for rotary tillage than disk plow tillage in the same gear stages. The relative severeness was 1010.12 in the rotary tillage under L3 High P1 based on the disk plow tillage under L3 Low P2.

Analysis of the PTO Driveline Rattle Noise on an Agricultural Tractor (농업용 트랙터 PTO 전동라인의 래틀 소음 분석)

  • Ahn, Da-Vin;Shin, In-Kyung;Han, Hyun-Woo;Son, Gwan-Hee;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.45-54
    • /
    • 2019
  • In this study, we analyze the rattle noise of a power takeoff (PTO) driveline and develop a PTO driveline resonance model. We measured the rattle noise of the PTO driveline on the output shaft and, by analyzing the rattle noise in the time domain, we determine that the engine expansion stroke period matches the sound pressure of rattle noise. This finding helped us demonstrate that the rattle noise is caused by the collision between the PTO driving gear and the gear driven by the engine expansion stroke; the torsional vibration caused by this collision is affected by the angular velocity fluctuation of the PTO drive shaft. By measuring the angular velocity of the PTO drive shaft, we confirm that the angular velocity fluctuation of the engine flywheel tends to excessively amplify the PTO drive shaft angular velocity fluctuation. We conclude that the resonance, which occurs when the operating frequency of the engine is close to the natural frequency of the tractor power transmission system, causes the excessive angular velocity fluctuation of the PTO drive shaft. We performed a modal analysis of the PTO driveline resonance and, using the characteristic equation, we show that the resonance occurs when the engine rotation speed is close to 850 rpm, which matches the natural frequency of the PTO driveline.

Reduction of the Rattle Noise of PTO Driveline using a Tosional Damper (비틀림 댐퍼를 이용한 PTO 전동 라인의 치타음 감소)

  • Park Y.J.;Kim K.U.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.4 s.117
    • /
    • pp.315-322
    • /
    • 2006
  • A torsional damper comprised of two stage pre-dampers was used to reduce the rattle noise generated in the PTO gear box of a direct engine-PTO driveline of agricultural tractors. It was designed and mounted to the engine flywheel to reduce the torque fluctuation-induced speed variations at the driving gears in the PTO gearbox, which were found to be main cause of the rattle noise. The effects of a hysteresis torque and a torsional stiffness of the damper on the speed variation were analyzed using an 11 degree of freedom non-linear model of the damped PTO driveline. The torsional damper was represented by a single degree of freedom model with 7 parameters. Under a constant hysteresis torque, velocity variation was reduced with decrease in the torsional stiffness of the damper. The velocity variation was also decreased with decrease in the hysteresis torque under a constant torsional stiffness. Optimum values of the torsional stiffness and hysteresis torque were obtained by the model simulation for the PTO driveline under the study. When the optimum values of the damper were used, the sound pressure level of the rattle noise was reduced by 81%, resulting in a reduction of 15dB(A). The optimum damper also reduced the engine speed variation, resulting in a reduction of 80% at the driving gears in the PTO gearbox. The torsional damper showed a good performance in reducing the rattle noise caused by the speed variation in the direct engine-PTO driveline.

Comparison of Tillage and Loads Characteristics of Three Types of Rotavators: Rotary-type, Crank-type, and Plow-type

  • Kim, Myoung-Ho;Nam, Ju-Seok;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.73-80
    • /
    • 2013
  • Purpose: This study was conducted to compare tillage and loads characteristics of three types of rotavators in farmland working condition of Korea. Methods: Tillage operations using three types of rotavators, i.e. rotary-type, crank-type and plow-type, were carried out in a dry field of Korea. The same prime mover tractor was used for driving three types of rotavators, and under several operational conditions, tillage characteristics such as actual working speed, rotavating depth, rotavating width, actual field capacity, flow of tilled soil, soil inversion ratio, and pulverizing ratio were measured. In addition, loads characteristics like torque and required power of Power Take-Off (PTO) shaft were calculated. Results: The average rotavating depth was smaller than the nominal value for all rotavators, and the difference was the greatest in the plow-type rotavator. Nevertheless, the plow-type rotavator showed the largest rotavating depth. The rotavating width was the same as the nominal value of all rotavators. The flow of tilled soil at the same operational conditions was the greatest in the plow-type rotavator and was the smallest in the rotary-type rotavator. In the most commonly used gear conditions of L2 and L3, the average soil pulverizing ratio was the greatest in the rotary-type rotavator, and followed by crank-type and plow-type rotavators in order. In the gear L2 and L3, the plow-type rotavator also had the lowest average soil inversion ratio while the rotary-type and crank-type rotavators had the same soil inversion ratio each other. The average torque and power of PTO shaft in the gear L2 and L3 were the highest in the plow-type rotavator. The load spectra of PTO shaft applying rain flow counting method and Smith-Waston-Topper equation to the measured torque showed that the modified torque amplitude was the greatest in the crank-type rotavator. This may come from the large torque fluctuation of crank-type rotavator during tillage operations. Conclusions: The three types of rotavators had different tillage and loads characteristics. The plow-type rotavator had the deepest rotavating depth, the smallest soil inversion ratio, the largest soil pulverizing ratio and required PTO power. Also, the crank-type rotavator showed a large torque fluctuation because of their unique operational mechanism. This study will help the farmers choose a suitable type of rotavator for effective tillage operations.

Modeling and Simulation for a Tractor Equipped with Hydro-Mechanical Transmission

  • Choi, Seok Hwan;Kim, Hyoung Jin;Ahn, Sung Hyun;Hong, Sung Hwa;Chai, Min Jae;Kwon, Oh Eun;Kim, Soo Chul;Kim, Yong Joo;Choi, Chang Hyun;Kim, Hyun Soo
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.171-179
    • /
    • 2013
  • Purpose: A simulator for the design and performance evaluation of a tractor with a hydro-mechanical transmission (HMT) was developed. Methods: The HMT consists of a hydro-static unit (HSU), a swash plate control system, and a planetary gear. It was modeled considering the input/output relationship of the torque and speed, and efficiency of HSU. Furthermore, a dynamic model of a tractor was developed considering the traction force, running resistance, and PTO (power take off) output power, and a tractor performance simulator was developed in the co-simulation environment of AMESim and MATLAB/Simulink. Results: The behaviors of the design parameters of the HMT tractor in the working and driving modes were investigated as follows; For the stepwise change of the drawbar load in the working mode, the tractor and engine speeds were maintained at the desired values by the engine torque and HSU stroke control. In the driving mode, the tractor followed the desired speed through the control of the engine torque and HSU stroke. In this case, the engine operated near the OOL (optimal operating line) for the minimum fuel consumption within the shift range of HMT. Conclusions: A simulator for the HMT tractor was developed. The simulations were conducted under two operation conditions. It was found that the tractor speed and the engine speed are maintained at the desired values through the control of the engine torque and the HSU stroke.