• Title/Summary/Keyword: PTGS2

Search Result 33, Processing Time 0.026 seconds

Application of Primary Rat Corneal Epithelial Cells to Evaluate Toxicity of Particulate Matter 2.5 to the Eyes (눈에 대한 미세먼지의 독성 평가를 위한 쥐 각막 상피 세포의 적용)

  • Kim, Da Hye;Hwangbo, Hyun;Lee, Hyesook;Cheong, Jaehun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.712-720
    • /
    • 2022
  • The purpose of this study was to investigate the efficacy of rat corneal-derived epithelial cells as an in vitro model to evaluate the harmfulness of the cornea caused by particulate matter 2.5 (PM2.5). To establish an experimental model for the effect of PM2.5 on corneal epithelial cells, it was confirmed that primary cultured cells isolated from rat eyes were corneal epithelial cells through pan-cytokeratin staining. Our results showed that PM2.5 treatment reduced cell viability of primary rat corneal epithelial (RCE) cells, which was associated with the induction of apoptosis. PM2.5 treatment also increased the generation of reactive oxygen species due to mitochondrial dysfunction. In addition, the production of nitric oxide and inflammatory cytokines was increased in PM2.5-treated RCE cells. Furthermore, through heatmap analysis showing various expression profiling between PM2.5-exposed and unexposed RCE cells, we proposed five genes, including BLNK, IL-1RA, Itga2b, ABCb1a and Ptgs2, as potential targets for clinical treatment of PM-related ocular diseases. These findings indicate that the primary RCE cell line is a useful in vitro model system for the study of PM2.5-mediated pathological mechanisms and that PM2.5-induced oxidative and inflammatory responses are key factors in PM2.5-induced ocular surface disorders.

Immunosuppression-enhancing effect of the administration of allogeneic canine adipose-derived mesenchymal stem cells (cA-MSCs) compared with autologous cA-MSCs in vitro

  • Wi, Hayeon;Lee, Seunghoon;Kim, Youngim;No, Jin-Gu;Lee, Poongyeon;Lee, Bo Ram;Oh, Keon Bong;Hur, Tai-young;Ock, Sun A
    • Journal of Veterinary Science
    • /
    • v.22 no.5
    • /
    • pp.63.1-63.14
    • /
    • 2021
  • Background: Recently, mesenchymal stem cells therapy has been performed in dogs, although the outcome is not always favorable. Objectives: To investigate the therapeutic efficacy of mesenchymal stem cells (MSCs) using dog leukocyte antigen (DLA) matching between the donor and recipient in vitro. Methods: Canine adipose-derived MSCs (cA-MSCs) isolated from the subcutaneous tissue of Dog 1 underwent characterization. For major DLA genotyping (DQA1, DQB1, and DRB1), peripheral blood mononuclear cells (PBMCs) from two dogs (Dogs 1 and 2) were analyzed by direct sequencing of polymerase chain reaction (PCR) products. The cA-MSCs were co-cultured at a 1:10 ratio with activated PBMCs (DLA matching or mismatching) for 3 days and analyzed for immunosuppressive (IDO, PTGS2, and PTGES), inflammatory (IL6 and IL10), and apoptotic genes (CASP8, BAX, TP53, and BCL2) by quantitative real-time reverse transcriptase-PCR. Results: cA-MSCs were expressed cell surface markers such as CD90+/44+/29+/45- and differentiated into osteocytes, chondrocytes, and adipocytes in vitro. According to the Immuno Polymorphism Database, DLA genotyping comparisons of Dogs 1 and 2 revealed complete differences in genes DQA1, DQB1, and DRB1. In the co-culturing of cA-MSCs and PBMCs, DLA mismatch between the two cell types induced a significant increase in the expression of immunosuppressive (IDO/PTGS2) and apoptotic (CASP8/BAX) genes. Conclusions: The administration of cA-MSCs matching the recipient DLA type can alleviate the need to regulate excessive immunosuppressive responses associated with genes, such as IDO and PTGES. Furthermore, easy and reliable DLA genotyping technology is required because of the high degree of genetic polymorphisms of DQA1, DQB1, and DRB1 and the low readability of DLA 88.

Anti-inflammatory, Anti-aging, and Sebum Inhibitory Effects of Osmanthus fragrans Flower Extract (목서 꽃 추출물의 항염, 항노화 및 피지 억제 효능)

  • Hyung-Min Kim;Yeon Su Jeong;Sehyun Kim;Jeong Hun Cho;Yong Deog Hong;Won-Seok Park
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.2
    • /
    • pp.171-178
    • /
    • 2024
  • In this study, we aimed to determine the various effects of Osmanthus fragrans (O. fragrans) flower extract on the skin in order to utilize it as a cosmetic material. For this purpose, Osmanthus fragrans flower extract (OFFE) of Jeju Island was prepared and used in the experiment. The experiments were evaluated by the quantitative real-time polymerase chain reaction (qRT-PCR) and lipid droplet staining assay. First, the OFFE decreased the gene expressions of three representative pro-inflammatory cytokines (IL-8, IL-6, and IL-1α) and an inflammation-related enzyme, PTGS2 induced by poly I:C in epidermal keratinocytes. In addition, the OFFE increased the gene expression levels of collagen (COL1A1) and elastin (ELN) in dermal fibroblasts. Further, the OFFE showed the inhibitory effect in sebum production by linoleic acid in sebocytes. Therefore, from this study, it is expected that OFFE can be used as a natural cosmetic material for anti-inflammatory, anti-aging, and sebum inhibitory efficacy.

Establishment of Embryo Culture System using Co-incubated Collagen Matrix Gel with Porcine Endometrial Cells (돼지 자궁내막 상피세포와 공동배양된 Collagen Matrix Gel을 이용한 체외수정란 배양체계 확립)

  • Lee, Sang-Hee;Han, Hye-In;Hwangbo, Yong;Lee, Seunghyung;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.39 no.3
    • /
    • pp.49-57
    • /
    • 2015
  • In order to achieve successful in vitro production of embryo, it is necessary to establish intrauterine environment during in vitro culture. Thus, this study was investigated to establish embryo culture system using co-incubated collagen matrix gel (CM) with endometrial epithelial cells (EC). Endometrial epithelial cells were isolated from porcine endometrium at follicular phase, the cells seeded in insert dish for co-incubation with CM-coated culture dish. Then, culture media treated with/without 2.0 IU/ml hCG or 10 ng/ml $IL-1{\beta}$. After incubation for 24 h, the co-incubated insert dishes were removed from CM-coated culture dish before embryo culture. Embryos at 48 h after in vitro fertilization (IVF) were cultured on the dish for 120 h with porcine zygote medium. We determined PTGS-2 expression in the ECs, VEGF protein in co-incubated CM with EC and observed cleavage rate and blastocyst development of embryos at 168 h after IVF. In result, expression of PTGS-2 was higher at co-incubated EC with hCG and $IL-1{\beta}$ groups than EC without hCG and $IL-1{\beta}$. The VEGF protein was detected at co-incubated CM with EC, EC treated with hCG and $IL-1{\beta}$ groups higher than CM group. Also, cleavage rate was no significantly difference among all group, however, blastocyst development was significantly higher in co-incubated CM with EC treated with hCG group than un-treated groups (p<0.05). Therefore, we suggest that novel embryo culture system using co-incubated collagen matrix gel with endometrial epithelial cells treated with $IL-1{\beta}$ is beneficial and useful for enhancing the production of porcine blastocysts in vitro.

Regulation of Inflammatory Response in Periodontal Ligament Cells by Transglutaminase 2

  • Lee, Sun Young;Jang, Cheol Hun;Ryu, Je-Hwang
    • International Journal of Oral Biology
    • /
    • v.42 no.4
    • /
    • pp.191-196
    • /
    • 2017
  • Transglutaminase2 (TGM2) is a multi-functional calcium dependent enzyme that affects angiogenesis, apoptosis, differentiation, attachment, and changes in the extracellular matrix. However, its function in periodontal tissue has not yet been studied. The aim of this study was to investigate the association of the TGM2 expression and the modulation of inflammatory mediators in inflamed periodontal ligament (PDL) cells induced by pro-inflammatory cytokines such as Interleukin-$1{\beta}$ and the Tumor necrosis $factor-{\alpha}$. The expression of TGM2 was increased in the inflamed periodontal tissue and PDL cells. Over-expressed TGM2 in the PDL cells increased expression of MMP1, MMP3, IL-6, CXCL8, and PTGS2. Conversely, inhibition of TGM2 activity using LDN27219, a TGM2 inhibitor, resulted in decreased expression of MMP1, MMP3, IL-6, and CXCL8. The mRNA expression was confirmed by RT-PCR and quantified by qRT-PCR. Protein levels were also confirmed by immunofluoroscence staining. These results suggest that TGM2 plays an important role in the regulation of inflammatory mediators which exacerbate tissue damage in inflamed periodontal tissue.

Apelin-APJ axis inhibits TNF-alpha-mediated expression of genes involved in the inflammatory response in periodontal ligament cells

  • Lee, Gyuseok;Song, Won-Hyun;Kim, Su-Jin;Kim, Young-Gwon;Ryu, Je-Hwang
    • International Journal of Oral Biology
    • /
    • v.44 no.4
    • /
    • pp.182-190
    • /
    • 2019
  • Periodontitis is an inflammatory disease of the supportive tissues surrounding the teeth, and is characterized by irreversible destruction of the gingiva, periodontal ligament (PDL), and alveolar bone, which results in the loss of teeth. In the present study, we elucidated the correlation between periodontitis and apelin (APLN), an adipokine and a regulatory peptide, respectively, which are involved in inflammation and bone remodeling. The expression of APLN is negatively correlated with periodontitis progression in gingival tissue. In addition, treatment with TNF-α downregulated the expression of APLN in PDL cells and gingival fibroblasts, indicating the protective role played by APLN against periodontitis progression. The overexpression of APLN or treatment with exogenous APLN suppressed the TNF-α-mediated catabolic gene expression of MMP1, IL6, and PTGS2 in PDL cells. Moreover, the inhibition of the APLNA-PJ axis by ML221, an APJ inhibitor, induced catabolic gene expression in PDL cells. Thus, the results of this study provided evidence to support APLN as a regulatory factor of the inflammatory response during periodontitis.

Identification of potential candidate genes for lip and oral cavity cancer using network analysis

  • Mathavan, Sarmilah;Kue, Chin Siang;Kumar, Suresh
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.4.1-4.9
    • /
    • 2021
  • Lip and oral cavity cancer, which can occur in any part of the mouth, is the 11th most common type of cancer worldwide. The major obstacles to patients' survival are the poor prognosis, lack of specific biomarkers, and expensive therapeutic alternatives. This study aimed to identify the main genes and pathways associated with lip and oral cavity carcinoma using network analysis and to analyze its molecular mechanism and prognostic significance further. In this study, 472 genes causing lip and oral cavity carcinoma were retrieved from the DisGeNET database. A protein-protein interaction network was developed for network analysis using the STRING database. VEGFA, IL6, MAPK3, INS, TNF, MAPK8, MMP9, CXCL8, EGF, and PTGS2 were recognized as network hub genes using the maximum clique centrality algorithm available in cytoHubba, and nine potential drug candidates (ranibizumab, siltuximab, sulindac, pomalidomide, dexrazoxane, endostatin, pamidronic acid, cetuximab, and apricoxib) for lip and oral cavity cancer were identified from the DGIdb database. Gene enrichment analysis was also performed to identify the gene ontology categorization of cellular components, biological processes, molecular functions, and biological pathways. The genes identified in this study could furnish a new understanding of the underlying molecular mechanisms of carcinogenesis and provide more reliable biomarkers for early diagnosis, prognostication, and treatment of lip and oral cavity cancer.

Effects of Trichostatin A on Cumulus Expansion during Mouse Oocyte Maturation

  • Du, Ming;Fu, Xiangwei;Zhou, Yanhua;Zhu, Shien
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.11
    • /
    • pp.1545-1552
    • /
    • 2013
  • This study was conducted to investigate the effects of Trichostatin A (TSA) on cumulus expansion during mouse oocyte maturation. TSA treatment inhibited cumulus expansion and significantly reduced the cumulus expansion index (CEI) (p<0.05). To determine the underlying mechanism, the expression levels of several key factors that play crucial roles in cumulus expansion including components of extracellular matrix (ECM) (Has2, Ptgs2, Ptx3, and Tnfaip6) and Growth differentiation factor 9 (GDF9) were measured in control and TSA treated samples by real-time PCR. The effect of TSA on ERK phosphorylation (p-ERK1/2) in cumulus cells and GDF9 protein level in fully grown oocytes (FGOs) were detected by Western blotting. The expression levels of the ECM genes were significantly decreased (p<0.05) by TSA treatment while GDF9 expression did not response to TSA (p>0.05). TSA treatment blocked the activation of ERK1/2 (p<0.05) and had no significant effect on GDF9 protein expression (p>0.05). Collectively, these results suggested that TSA treatment altered ECM gene expression and blocked ERK1/2 activation to inhibit cumulus expansion in the mouse.

Rhodanthpyrone A and B play an anti-inflammatory role by suppressing the nuclear factor-κB pathway in macrophages

  • Kim, Kyeong Su;Han, Chang Yeob;Han, Young Taek;Bae, Eun Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.493-499
    • /
    • 2019
  • Macrophage-associated inflammation is crucial for the pathogenesis of diverse diseases including metabolic disorders. Rhodanthpyrone (Rho) is an active component of Gentiana rhodantha, which has been used in traditional Chinese medicine to treat inflammation. Although synthesis procedures of RhoA and RhoB were reported, the biological effects of the specific compounds have never been explored. In this study, the anti-inflammatory activity and mechanisms of action of RhoA and RhoB were studied in lipopolysaccharide (LPS)-stimulated macrophages. Pretreatment with RhoA and RhoB decreased inducible nitric oxide synthase and cyclooxygenase-2 expressions in RAW 264.7 cells and in thioglycollate-elicited mouse peritoneal macrophages. In addition, it downregulated transcript levels of several inflammatory genes in LPS-stimulated RAW 264.7 cells, including inflammatory cytokines/chemokines (Tnfa, Il6, and Ccl2) and inflammatory mediators (Nos2 and Ptgs2). Macrophage chemotaxis was also inhibited by treatment with the compounds. Mechanistic studies revealed that RhoA and RhoB suppressed the nuclear factor $(NF)-{\kappa}B$ pathway, but not the canonical mitogen activated protein kinase pathway, in LPS-stimulated condition. Moreover, the inhibitory effect of RhoA and RhoB on inflammatory gene expressions was attenuated by treatment with an $NF-{\kappa}B$ inhibitor. Our findings suggest that RhoA and RhoB play an anti-inflammatory role at least in part by suppressing the $NF-{\kappa}B$ pathway during macrophage-mediated inflammation.

Monitoring mRNA Expression Patterns in Macrophages in Response to Two Different Strains of Probiotics

  • Sang-Pil Choi;Si-Won Park;Seok-Jin Kang;Seul Ki Lim;Min-Sung Kwon;Hak-Jong Choi; Taehoon Chun
    • Food Science of Animal Resources
    • /
    • v.43 no.4
    • /
    • pp.703-711
    • /
    • 2023
  • As an initial study to elucidate the molecular mechanism of how probiotics modulate macrophage activity, we monitored mRNA expression patterns in peritoneal macrophages (PMs) treated with two different strains of probiotics. After treatment with either Weissella cibaria WIKIM28 or Latilactobacillus sakei WIKIM50, total RNAs from PMs were isolated and subjected into gene chip analyses. As controls, mRNAs from vehicle (phosphate-buffered saline, PBS)-treated PMs were also subjected to gene chip analysis. Compared to vehicle (PBS)-treated PMs, WIKIM28-treated and WIKIM50-treated PMs exhibited a total of 889 and 432 differentially expressed genes with expression differences of at least 4 folds, respectively. Compared to WIKIM28-treated PMs, WIKIM50-treated PMs showed 25 up-regulated genes and 21 down-regulated genes with expression differences of more than 2 folds. Interestingly, mRNA transcripts of M2 macrophage polarization marker such as anxa1, mafb, and sepp1 were increased in WIKIM50-treated PMs comparing to those in WIKIM28-treated PMs. Reversely, mRNA transcripts of M1 macrophage polarization marker such as hdac9, ptgs2, and socs3 were decreased in WIKIM50-treated PMs comparing to those in WIKIM28-treated PMs. In agreement with these observations, mRNA expression levels of tumor necrosis factor-α and interleukin-1α were significantly reduced in WIKIM50-treated macrophages compared to those in WIKIM28-treated macrophages. These results may indicate that probiotics can be classified as two different types depending on their ability to convert macrophages into M1 or M2 polarization.