• Title/Summary/Keyword: PT ceramics

Search Result 182, Processing Time 0.024 seconds

Development of Textured 0.37PMN-0.29PIN-0.34PT Ceramics-Based Multilayered Actuator for Cost-Effective Replacement of Single Crystal-Based Actuators

  • Temesgen Tadeyos Zate;Jeong-Woo Sun;Nu-Ri Ko;Bo-Kun Koo;Hye-Lim Yu;Min-Soo Kim;Woo-Jin Choi;Soon-Jong Jeong;Jae-Ho Jeon;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.362-368
    • /
    • 2023
  • Multilayered actuators using Pb(Mg1/3Nb2/3)O3-Pb(In1/2Nb1/2)O3-PbTiO3 (PMN-PIN-PT) crystals have demonstrated excellent properties, but are costly and lack mechanical strength. Textured PMN-PIN-PT ceramics exhibit robust mechanical strength and comparable properties to their single crystals form. However, the development of multilayered actuators using textured PMN-PIN-PT ceramics has not been achieved until now. This study presents the development of a multilayered actuator using textured 0.37PMN-0.29PIN-0.34PT ceramics with an Ag0.9/Pd0.1 inner electrode, co-fired at 950℃. A random 0.37PMN-0.29PIN-0.34PT ceramics multilayered actuator was also developed for comparison. The multilayered actuator consisted of 9 ceramic layers (36 ㎛ thickness) with an overall actuator thickness of 0.401 mm. The textured and random 0.37PMN-0.29PIN-0.34PT ceramics-based multilayered actuators achieved displacements of 0.61 ㎛ (0.15% strain) and 0.23 ㎛ (0.057% strain) at a low applied peak voltage of 100 V. These results suggest that the developed multilayered actuator using high-performance textured 0.37PMN-0.29PIN-0.34PT ceramics has the potential to replace expensive single crystal-based actuators cost-effectively.

Ferroelectric Properties and DPT in the Perovskite PMT-PT System (Perovskite PMT-PT계의 강유전 특성 및 확산상전이)

  • Kim, Y.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.122-129
    • /
    • 2008
  • Ferroelectric properties of the PMT-PT were also studied from the temperature dependence of hysteresis loops using a method slightly modified from Sawyer-Tower's. Dielectric, pyroelectric and piezoelectric properties of the ceramics in the system PMT-PT were investigated. The resulted densities of the PMT-PT ceramics system were greater than 97 % of the theoretical value. As observed SEM micrograph of the fracture surfaces of the PMT-PT ceramics system, the average grain sizes were increased about 3-5 ${\mu}m$ to 6-8 ${\mu}m$ with increasing sintering temperature. The specimens with PT<0.30 for PMT-PT solid solution system exhibited the dielectric and pyroelectric properties of a typical relaxor ferroelectrics. The composition with the maximum dielectric constant exhibits relatively superior pyroelectric and piezoelectric properties.

Prepartion and Characterization of the Pt doped $TiO_2$ Membranes

  • Bae, Dong-Sik;Han, Kyong-Sop;Choi, Sang-Hael
    • The Korean Journal of Ceramics
    • /
    • v.3 no.1
    • /
    • pp.52-56
    • /
    • 1997
  • The Pt doped $TiO_2$ composite membranes were prepared by the sol-gel process. The Pt doped titania sol was peptized with hydrochloric acid in the pH range of 1.23 to 1.32 at 5$0^{\circ}C$. The average particle size of the Pt doped titania sol was shown to be below 15nm and well dispersed in the solution. XPS show the Pt elements continuous and homogeneous dispersed in the $TiO_2$ membrane. The mean particle size of the Pt doped $TiO_2$ composite membrane has smaller than that of the undoped $TiO_2$ composite membrane. The average pore size of the Pt doped $TiO_2$ composite membrane was increased from 58 to 193 $\AA$ with firing temperature changed from 550 to 85$0^{\circ}C$. It was observed that the Pt doped $TiO_2$ composite membranes showed crack-free and homogeneous microstructue as well as narrow particle size distribution up to above 75$0^{\circ}C$.

  • PDF

Propylene Hydrogenation over Cubic Pt Nanoparticles Deposited on Alumina

  • Yoo, Jung-Whan;Lee, Sung-Min;Kim, Hyung-Tae;El-Sayed, M.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.843-846
    • /
    • 2004
  • Pt nanoparticles loaded on alumina through an impregnation at room temperature was prepared using $K_2PtCl_4$ and acrylic acid as capping material. Transmission electron microscopy showed that the deposited Pt particles indicate ca. 80% cubic shapes with a narrow distribution of 8-10 nm in size. Propylene hydrogenation over the catalyst has been carried out to evaluate their catalytic performance by the values of activation energy. It is determined from the initial rate, reaction order, and rate constant and is found to be $9.7{\pm}0.5$ kcal/mol. This value has been discussed by comparing to those of encapsulated- and truncated octahedral Pt nanoparticles deposited on alumina, respectively, to study influence of the particle size and shape, and capping material used on the activation energy.

Preparation of 0.9PMN-0.1PT ceramics by sol-gel process (졸-겔법에 의한 0.9PMN-0.1PT 소결체의 제조)

  • 연석주;김종흠;고태석
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The preparation of 0.9PMN-0.1PT ceramics by the metal alkoxide method and the effect of excess $Mg(OC_2H_5)_2$, $Pb(CH_3COO)_2{\cdot}3H_2O$ are reported. The excess$ Mg(OC_2H5)_2$ addition signficantly affects the rate of perovskite phase formation in 0.9PMN-0.1PT ceramics. The sample by addition of 5 wt% excess $Mg(OC_2H5)_2$ sintered at $1150^{\circ}C$ for 1 hr obtained perovskite single phase and showed 98% of the theoretical density. The dielectric constant of the pellets sintered at $1150^{\circ}C$ was increased by the addition of 5 wt% excess $Mg(OC_2H_5)_2$ and had a maximum value of 15000 at 1 kHz.

Effects of $MnO_2$ and $Fe_2O_3$ Additives on the Piezoelectric Properties of 0.05PMN-0.451PT-0.499PZ Ceramics

  • Song, Eun-Seok;Sahn Nahm;Paik, Jong-Hoo;Yoon, Seok-Jin;Park, Jae-Hwan;Ryou, Sun-Youn
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.348-353
    • /
    • 2000
  • The effects of MnO$_2$ and Fe$_2$O$_3$ on the piezoelectric properties of 0.05PMN-0.451PT-0.499PZ ceramics were investigated. The addition of MnO$_2$ increased mechanical quality factor (Q$_m$) but decreased the dielectric constant (K$^{T}_{33}$) and compliance (S$^{E}_{11}$) of the specimens. These results indicated that MnO$_2$ behaves as an acceptor in 0.05MN-0.451PT-0.499PZ ceramics. The electromecanical coupling coefficient (K$_P$) of 0.05PMN-0.451PT-0.499PZ ceramics slightly increased with the addition of MnO$_2$ however, the enhancement of $K_P$ was insignificant. A small amount of Fe$_2$O$_3$ was added to enhance the $K_P$ of the 0.05PMN-0.451PT-0.499PZ + 0.5 wt% MnO$_2$ ceramics. The addition of Fe$_2$O$_3$ largely increased $K_P$ through the increase of the K$^{T}_{33}$ and the polarization. The mechanical quality factor of the specimens decreased with the addition of Fe$_2$O$_3$however, the reduction was negligible.

  • PDF

Piezoelectric characteristics of PZ-PT-PMS ceramics according to calcination temperature of PMS (PMS 하소온도애 따른 PZ-PT-PMS 계 세라믹 압전특성)

  • Lee, D.J.;Jeong, S.H.;Kim, H.H.;Park, S.K.;Lim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1510-1512
    • /
    • 1997
  • Piezoelectric characteristics of lead zirconate(PZ)-lead titanate(PT)-lead manganese antimony(PMS) ceramics with the various changes of calcination temperature in PMS were prepared. The range of their sintering temperature was from $1100^{\circ}C$ to $1250^{\circ}C$. The electro-mechanical properties of PZ-PT-PMS ceramics such as piezoelectric constant, electro-mechanical coupling coefficient, and mechanical quality factor are measured as a function of the calcination temperature of PMS. As increasing the calcination temperature of PMS mechanical quality factor is increased.

  • PDF

Characteristics of PMN-PZ-PT Thick Film Ceramic by Low-Temperature Sintering Aids (저온 소결 조제에 따른 PMN-PZ-PT 후막 세라믹 특성)

  • Jung, Myungwon;Jeon, Dae-Woo;Kim, Jin-Ho;Lee, Youngjin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.476-482
    • /
    • 2016
  • Convectional PZT based piezoelectric ceramics have to sinter at high temperature about $1,200^{\circ}C$ for their suitable electrical properties. However, some issues: low temperature sintering piezoelectric ceramic composition and reliable internal electrode, have recently attracted a great deal of interest as a highly efficient multi-layered piezoelectric ceramics. In order to optimize low temperature sintering conditions of thick-film PMN-PZ-PT ceramic, it was investigated sintering and piezoelectric properties according to the change of $LiBiO_2$ contents. Thus, the superior piezoelectric properties were found at the pallet type PMN-PZ-PT optimized with low sintering processing at $925^{\circ}C$ including 7 wt% $LiBiO_2$ sintering aid. Consequentially, we successfully manufactured thick-film PMN-PZ-PT ceramics, which had superior piezoelectric and dielectric properties, with 5 wt% of $LiBiO_2$ sintering aid at temperature of $900^{\circ}C$.

Effect of Mn on Dielectric and Piezoelectric Properties of 71PMN-29PT [71Pb(Mg1/3Nb2/3)O3-29PbTiO3] Single Crystals and Polycrystalline Ceramics

  • Oh, Hyun-Taek;Joo, Hyun-Jae;Kim, Moon-Chan;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.166-173
    • /
    • 2018
  • In order to investigate the effect of Mn on the dielectric and piezoelectric properties of PMN-PT [$Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$], four different types of 71PMN-29PT samples were prepared using the solid-state single crystal growth (SSCG) method: (1) Undoped single crystals, (2) undoped polycrystalline ceramics, (3) Mn-doped single crystals, and (4) Mn-doped polycrystalline ceramics. In the case of single crystals, the addition of 0.5 mol% Mn to PMN-PT decreased the dielectric constant ($K_3{^T}$), piezoelectric charge constant ($d_{33}$), and dielectric loss (tan ${\delta}$) by about 50%, but increased the coercive electric field ($E_C$) by 50% and the electromechanical quality factor ($Q_m$) by 500%, respectively. The addition of Mn to PMN-PT induced an internal bias electric field ($E_I$) and thus specimens changed from piezoelectrically soft-type to piezoelectrically hard-type. This Mn effect was more significant in single crystals than in ceramics. These results demonstrate that Mn-doped 71PMN-29PT single crystals, because they are piezoelectrically hard and simultaneously have high piezoelectric and electromechanical properties, have great potential for application in fields of SONAR transducers, high intensity focused ultrasound (HIFU), and ultrasonic motors.