• 제목/요약/키워드: PSFB(phase-shifted full bridge) converter

검색결과 18건 처리시간 0.02초

홀드 업 타임 보상회로를 가진 IT 기기용 Front-end PSFB DC/DC 컨버터 (Phase-Shifted Full Bridge(PSFB) DC/DC Converter with a Hold-up Time Compensation Circuit for Information Technology (IT) Devices)

  • 이강현
    • 전력전자학회논문지
    • /
    • 제18권5호
    • /
    • pp.501-506
    • /
    • 2013
  • A hold-up time compensation circuit is proposed to get high efficiency of the front-end phase-shifted full bridge DC/DC converter. The proposed circuit can make the phase-shifted full bridge front-end DC/DC converter built with 0.5 duty ratio so that the conduction loss of the primary side and voltage stress across rectifier in the secondary side are reduced and the higher efficiency can be obtained. Furthermore, the requirement of an output filter significantly can diminish due to the perfect filtered waveform. A 12V/100A prototype has been made and experimental results are given to verify the theoretic analysis and detailed features.

태양광 모듈 통합 전기 자동차용 Phase Shift Full Bridge Converter (A PV-Module Integrated Phase Shift Full Bridge Converter for EV)

  • 황윤경;남광희
    • 전력전자학회논문지
    • /
    • 제25권6호
    • /
    • pp.425-432
    • /
    • 2020
  • The phase-shifted, full-bridge (PSFB) DC-DC converter is widely used in electric vehicles (EVs) to charge a low-voltage (12 V) battery from a high-voltage battery. A Photovoltaic (PV) module-integrated PSFB converter is proposed for the EV power conversion system. The converter is useful because solar energy can be utilized to extend the driving range. The buck converter circuit is simply realized by adding one switch to the conventional PSFB converter's secondary side. For the inductor and diode, the existing components in the PSFB converter are shared. The proposed converter can charge a low-voltage battery from the PV module with maximum power point tracking. In addition, the two power sources can be used simultaneously, and efficiency is increased by reducing the circulating current, which is a problem for the conventional PSFB converter.

High Efficiency Design Procedure of a Second Stage Phase Shifted Full Bridge Converter for Battery Charge Applications Based on Wide Output Voltage and Load Ranges

  • Cetin, Sevilay
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.975-984
    • /
    • 2018
  • This work presents a high efficiency phase shifted full bridge (PSFB) DC-DC converter for use in the second stage of a battery charger for neighborhood electrical vehicle (EV) applications. In the design of the converter, Lithium-ion battery cells are preferred due to their high voltage and current rates, which provide a high power density. This requires wide range output voltage regulation for PSFB converter operation. In addition, the battery charger works with a light load when the battery charge voltage reaches its maximum value. The soft switching of the PSFB converter depends on the dead time optimization and load condition. As a result, the converter has to work with soft switching at a wide range output voltage and under light conditions to reach high efficiency. The operation principles of the PSFB converter for the continuous current mode (CCM) and the discontinuous current mode (DCM) are defined. The performance of the PSFB converter is analyzed in detail based on wide range output voltage and load conditions in terms of high efficiency. In order to validate performance analysis, a prototype is built with 42-54 V / 15 A output values at a 200 kHz switching frequency. The measured maximum efficiency values are obtained as 94.4% and 76.6% at full and at 2% load conditions, respectively.

넓은 입력전압 범위에서 높은 효율을 가지는 위상천이 풀브릿지 컨버터 (A High Efficiency Phase-Shifted Full-Bridge Converter with Wide Input Voltage Range)

  • 한정규;최승현;문건우
    • 전력전자학회논문지
    • /
    • 제24권1호
    • /
    • pp.66-69
    • /
    • 2019
  • This study proposes a high-efficiency phase-shifted full-bridge (PSFB) converter with a wide input voltage range. The conventional PSFB converter is a useful topology in high-power applications. This converter not only achieves the zero-voltage switching of the primary switches, but also has small RMS current in the primary side. However, because the conventional PSFB converter has large freewheeling current in the primary side when it is designed considering the hold-up time of the converter, such a converter has high conduction loss at the primary switches. To solve this problem, a new PSFB converter is proposed in this study. The experiment is implemented with an input voltage ranging from a 320 V-400 V and an output power specification of 715 W.

전기자동차 탑재형 충전기 응용에서 위상변조 풀브리지 컨버터 성능 분석과 그 개선에 관한 연구 (Research on the Analysis and Improvement of the Performance of the Phase-Shifted Full-Bridge Converter for Electric Vehicle Battery Charger Applications)

  • 이일운
    • 전력전자학회논문지
    • /
    • 제20권5호
    • /
    • pp.479-490
    • /
    • 2015
  • The conventional phase-shifted full-bridge (PSFB) converter with an LC filter has been widely used for high-power applications of over 1.0 kW. However, the PSFB converter cannot obtain optimal power conversion efficiency during the battery charging in electric vehicle (EV) on-board battery charger applications because of its unique drawbacks, such as a large circulating current and very high voltage stress in the rectifier diodes. As a result, the converters with a capacitive filter, such as LLC resonant converters, replace the PSFB converter in the EV chargers. This study analyzes the problems of the PSFB converter for EV on-board charger applications in detail. Moreover, the newest converters based on the conventional PSFB converter are reviewed. On the basis of the reviews, new PSFB converter topologies are proposed for EV charger applications. The new topologies are formed by connecting the rectifier stage in the PSFB converter with the output of an LLC resonant converter in series. Many problems of the conventional PSFB converter for EV charger applications can be solved and the performance can be more improved because of this structure; this idea is confirmed by an experiment consisting of prototype battery chargers under the output voltage range of 250-450 Vdc at 3.3 kW.

ZVS 위상천이 풀브릿지 컨버터의 디지털 샘플링 기법에 따른 소신호 모델 분석 (An Analysis of ZVS Phase-Shift Full-Bridge Converter's Small Signal Model according to Digital Sampling Method)

  • 김정우;조영훈;최규하
    • 전력전자학회논문지
    • /
    • 제20권2호
    • /
    • pp.167-174
    • /
    • 2015
  • This study describes how digital time delay deteriorates control performance in zero voltage switching (ZVS) phase-shifted full bridge (PSFB) converter. The small-signal model of the ZVS PSFB converter is derived from the buck-converter small-signal model. Digital time delay effects have been considered according to the digital sampling methods. The analysis verifies that digital time delays reduce the stability margin of the converter, and the double sampling technique exhibits better performance than the single sampling technique. Both simulation and experimental results based on 250 W ZVS PSFB confirm the validity of the analyses performed in the study.

The Impact of Parasitic Elements on Spurious Turn-On in Phase-Shifted Full-Bridge Converters

  • Wang, Qing
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.883-893
    • /
    • 2016
  • This paper presents a comprehensive analysis of the spurious turn-on phenomena in phase-shifted full-bridge (PSFB) converters. The conventional analysis of the spurious turn-on phenomenon does not establish in the PSFB converter as realizing zero voltage switching (ZVS). Firstly, a circuit model is proposed taking into account the parasitic capacitors and inductors of the transistors, as well as the parasitic elements of the power circuit loop. Second, an exhaustive investigation into the impact of all these parasitic elements on the spurious turn-on is conducted. It has been found that the spurious turn-on phenomenon is mainly attributed to the parasitic inductors of the power circuit loop, while the parasitic inductors of the transistors have a weak impact on this phenomenon. In addition, the operation principle of the PSFB converter makes the leading and lagging legs have distinguished differences with respect to the spurious turn-on problems. Design guidelines are given based on the theoretical analysis. Finally, detailed simulation and experimental results obtained with a 1.5 kW PSFB converter are given to validate proposed analysis.

Hybrid Control Strategy of Phase-Shifted Full-Bridge LLC Converter Based on Digital Direct Phase-Shift Control

  • Guo, Bing;Zhang, Yiming;Zhang, Jialin;Gao, Junxia
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.802-816
    • /
    • 2018
  • A digital direct phase-shift control (DDPSC) method based on the phase-shifted full-bridge LLC (PSFB-LLC) converter is presented. This work combines DDPSC with the conventional linear control to obtain a hybrid control strategy that has the advantages of linear control and DDPSC control. The strategy is easy to realize and has good dynamic responses. The PSFB-LLC circuit structure is simple and works in the fixed frequency mode, which is beneficial to magnetic component design; it can realize the ZVS of the switch and the ZCS of the rectifier diode in a wide load range. In this work, the PSFB-LLC converter resonator is analyzed in detail, and the concrete realization scheme of the hybrid control strategy is provided by analyzing the state-plane trajectory and the time-domain model. Finally, a 3 kW prototype is developed, and the feasibility and effectiveness of the DDPSC controller and the hybrid strategy are verified by experimental results.

PSFB 컨버터에서 변압기 최적 설계에 관한 연구 (A Study on the Optimal Design of the Transformer in the PSFB Converter)

  • 이일운
    • 한국전자통신학회논문지
    • /
    • 제11권9호
    • /
    • pp.869-876
    • /
    • 2016
  • 위상변조 풀브리지 컨버터를 설계, 개발하는데 있어, 전력반도체와 그 전력반도체 구동회로, 변압기 및 인덕터, 정류기 등을 포함한 많은 설계 요인들이 존재한다. 그 중에서 위상변조 풀브리지 컨버터의 최적 성능에 매우 큰 영향을 끼치는 것은 변압기 설계이다. 특히 변압기 설계는 대형 컴퓨터 데이터센터에 사용되는 전원장치에서처럼 저전압, 고전류 응용에서 매우 중요하다. 이 논문에서는 위상변조 풀브리지 컨버터의 최적 성능을위한 변압기 설계에 관한 연구 결과를 발표한다. 변압기 설계에 관련된 설계 수식들을 유도하고 세밀한 분석을 한다. 이를 토대로, 12V, 1200W 서버전원장치 응용을 위한 위상변조 풀브리지 컨버터 최적 성능을 위한 변압기 설계를 결과물로 제시한다.

A New High Efficiency Phase Shifted Full Bridge Converter for a Power Sustaining Module of Plasma Display Panel

  • Lee Woo-Jin;Kim Chong-Eun;Han Sang-Kyoo;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • 제6권1호
    • /
    • pp.45-51
    • /
    • 2006
  • A new high efficiency phase shifted full bridge (PSFB) converter for the power sustaining module of a plasma display panel (PDP) is proposed in this paper. The proposed converter employs a voltage doubler rectifier without an output inductor. Since it has no output inductor, the voltage stresses of the secondary rectifier diodes can be clamped at the output voltage level. No dissipative resistor-capacitor (RC) snubber for rectifier diodes is needed. Therefore, high efficiency, as well as, a low noise output voltage can be realized. Due to the elimination of the large output inductor, it features a simple structure, lower cost, smaller mass and lighter weight. Furthermore, the proposed converter has wide zero voltage switching (ZVS) ranges with low current stresses of the primary switches. Also the resonance between the leakage inductor of the transformer and the capacitor of the voltage doubler cell reduces the current stresses of the rectifier diodes. In this paper, operational principles, an analysis of the proposed converter and experimental results are presented.