• Title/Summary/Keyword: PSC bridges

Search Result 287, Processing Time 0.028 seconds

Verification of Manufacturing Process of PSC Box Girder Bridge Segment by 3D Simulation (3차원 시뮬레이션을 활용한 PSC 박스거더교 세그먼트 제작 공정의 검증)

  • Kim, Min-Seok;Son, Heung-Rak;Lee, Kwang-Myong;Park, Young-Ha;Park, Min-Seok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.235-240
    • /
    • 2008
  • PSC box girder bridges are built through the repetitive manufacturing process of concrete segment. However, during the initial segment manufacturing stage, design change may occur frequently due to design errors and interferences between components, resulting in the extension of segment manufacturing period. This paper aims to verify the manufacturing process of PSC box girder segment by 3D simulation technique. All the components of a segment were modelled and assembled by simulation technique and then, some design errors were found and revised appropriately to optimize the manufacturing process of segment. Consequently, 3D simulation technique would be promising to improve the quality of the segment and to reduce its manufacturing time and cost.

  • PDF

An Experimental Study on Damage Detection of PSC Beams using Vibration Test (진동 시험을 통한 PSC 보의 손상탐지에 대한 실험적 연구)

  • Jung Woo-Tae;Park Jong-Sup;Park Young-Hwan;You Young-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.96-99
    • /
    • 2004
  • PSC bridges are deteriorated by many reasons and are difficult to measure residual prestressing forces. It is considered that one of the methods for measuring the prestressing forces is vibration test. This study reports on the change of natural frequency for damaged PSC beams using vibration test which have been carried out to evaluate the effects of cross-section and prestressing forces on natural frequency of PSC beams. According to the results of vibration test results, natural frequency is more sensitive to the changes of cross-section than those of prestress.

  • PDF

Assessment for Extending Span Ranges of PSC Girder Bridges (PSC 거더교의 장경간화 평가 기법)

  • Jeon, Se-Jin;Choi, Myoung-Sung;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.117-118
    • /
    • 2009
  • A systematic procedure is proposed that can be used to assess the span of PSC girder bridge for a given condition. The proposed scheme adopts a graphical approach that represents a relationship between the number of prestressing tendons and the span, and is derived on a basis of safety assessment equations of the girder in each stage of fabrication and in service.

  • PDF

A Case Study on Continuous Prestressed Concrete Composite Girder with Cross-beam Anchorage System (가로보를 정착구조로 하는 연속화 PSC 합성거더 시공사례)

  • Park, Hyun-Myo;Huh, Young;Kim, Yun-Hwan;Kim, Seok-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.451-452
    • /
    • 2010
  • Prestressed concrete I girder bridge has been one of the most widely used bridges in the world because of its excellent construction feasibility, economic efficiency, serviceability, and safety. But in Korea, the PSC bridge has not been utilized for long span because of high girder height in its standard design. Thus, the results confirm that it is possible to applicate the continuous PSC girder with end cross beam anchorage system using multi-stage prestressing technique.

  • PDF

Vehicle-bridge coupling vibration analysis based fatigue reliability prediction of prestressed concrete highway bridges

  • Zhu, Jinsong;Chen, Cheng;Han, Qinghua
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.203-223
    • /
    • 2014
  • The extensive use of prestressed reinforced concrete (PSC) highway bridges in marine environment drastically increases the sensitivity to both fatigue-and corrosion-induced damage of their critical structural components during their service lives. Within this scenario, an integrated method that is capable of evaluating the fatigue reliability, identifying a condition-based maintenance, and predicting the remaining service life of its critical components is therefore needed. To accomplish this goal, a procedure for fatigue reliability prediction of PSC highway bridges is proposed in the present study. Vehicle-bridge coupling vibration analysis is performed for obtaining the equivalent moment ranges of critical section of bridges under typical fatigue truck models. Three-dimensional nonlinear mathematical models of fatigue trucks are simplified as an eleven-degree-of-freedom system. Road surface roughness is simulated as zero-mean stationary Gaussian random processes using the trigonometric series method. The time-dependent stress-concentration factors of reinforcing bars and prestressing tendons are accounted for more accurate stress ranges determination. The limit state functions are constructed according to the Miner's linear damage rule, the time-dependent S-N curves of prestressing tendons and the site-specific stress cycle prediction. The effectiveness of the methodology framework is demonstrated to a T-type simple supported multi-girder bridge for fatigue reliability evaluation.

Dynamic Characteristics of High-speed Railway Steel Bridges (고속철도 강교량의 진동특성 분석)

  • Lee, Jung-Whee;Kim, Sung-Il;Kwark, Jong-Won;Lee, Pil-Goo;Yoon, Tae-Yang
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.632-637
    • /
    • 2007
  • The dynamic behavior of two steel bridges crossed by the Korean High Speed Train(KHST) has been investigated experimentally and the results are compared with the specification requirement of BRDM and other typical PSC Box bridge's responses. The investigated bridges are a 2-girder steel bridge of 1@40m span length(E-Won Bridge), 2@50m span length (Ji-Tan Bridge), and a PSC Box girder bridge of 2@40m span length (Yeon-Jae Bridge). A set of experimental tests were performed during operation of KHST, and a number of accelerometers, LVDTs and ring-type displacement transducers were utilized for measurement of three kinds of dynamic responses (acceleration, deflection, and end-rotation angle). Measured responses show that the vertical deflections and end-rotation angles of the three bridges are all satisfying the spec. requirement with large margin, but it was also found acceleration responses which are very close or exceed the limit value. Most of the excessive acceleration responses were found when the passing velocity of the KHST is close to the critical velocity ($V_{cr}$) which causes resonance. No noticeable differences of dynamic responses due to the different materials(steel or concrete) could be found within these experimental results.

Study on the Field Construction of Semi-Integral Bridge with PSC Girder Integrating End-Diaphragm (단부격벽 일체형 PSC거더를 갖는 반일체식 교량의 시공성 연구)

  • Park, Jong-Myen;Kim, Jin-Bae;Jun, Sung-Yong;Kim, Chung-Sik;You, Sung-Kun;Park, Joong-Bai;Lim, Jung-Hoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.2
    • /
    • pp.21-26
    • /
    • 2014
  • This paper introduces general concepts of jointless bridges and field construction case of semi-integral bridge with psc girder integrating end-diaphragm. The expansion joints need to satisfy thermal and safety conditions of bridges. General bridges with joints have some problems, which are frequently replacement cycle time from mechanical damage or unstable movement, maintenance cost and more. To solve these problems, Integral Abutment Bridges(IAB) have been applied overseas in the 1930s. In Korea, first IAB was constructed in the early 2000s and precast IAB systems was invented and applied lately. Kyungshin overpass bridge in Incheon is the Semi-IAB constructed, the span length is 2@35=70m and the width is 13.9m. The original plan was to use general joint bridge but design field changed with expectations for advanced economic estimation and maintenance. This changed method of B.I.B bridge construction provided not only workability, construction cost but also safety improvement at the same time.

Experimental Study on Structural Behavior of Precast PSC Curved Girder Bridge (프리캐스트 PSC 곡선 거더교의 구조거동에 대한 실험적 연구)

  • Kim, Sung Jae;Kim, Sung Bae;Uhm, Ki Ha;Kim, Jang Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1731-1741
    • /
    • 2014
  • Recently, many overpasses, highway, and advanced transit systems have been constructed to distribute the traffic congestion, thus small size of curved bridges with small curvature such as ramp structures have been increasing. Many of early curved bridges had been constructed by using straight beams with curved slabs, but curved steel beams have replaced them due to the cost, aesthetic and the advantage in building the section form and manipulating the curvature of beams, thereby large portion of curved bridges were applied with steel box girders. However, steel box girder bridges needs comparatively high initial costs and continuous maintenance such as repainting, which is the one of the reason for increasing the cost. Moreover, I-type steel plate girder which is being studied by many researchers recently, seem to have problems in stability due to the low torsional stiffness, resulting from the section characteristics with thin plate used for web and open section forms. Therefore, in recent studies, researchers have proposed curved precast PSC girders with low cost and could secured safety which could replace the curved steel girder type bridges. Hence, this study developed a Smart Mold system to manufacture efficient curved precast PSC girders. And by using this mold system a 40 m 2-girder bridge was constructed for a static flexural test, to evaluate the safety and performance under ultimate load. At the manufacturing stage, each single girder showed problems in the stability due to the torsional moment, but after the girders were connected by cross beams and decks, the bridge successfully distributed the stress, thereby the stability was confirmed. The static loading test results show that the initial crack was observed at 1,400 kN when the design load was 450 kN, and the load at the allowable deflection by code was 1,800 kN, which shows that the safety and usability of the curved precast PSC bridge manufactured by Smart Mold system is secured.

Accelerated Construction Method of Long-span PSC Girder Bridge for the Recovery of Flood Damaged Road (수해도로 복구를 위한 장경간 프리캐스트 바닥판 PSC거더교 교량 급속 시공)

  • Oh, Hyun Chui;Ma, Hyang Wook;Kim, In Gyu;Kim, Young Jin
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.4
    • /
    • pp.51-56
    • /
    • 2008
  • Because of our country's climate that has the 50% of the annual precipitation in summer, annually a lot of bridges on the roads are broken in this season. So, we need an accelerated bridge construction method that complete to repair the roads. This paper introduces the Hangae 2 bridge, prefabricated bridge using full depth precast deck panels and new types of PSC girders. The Hangae 2 bridge located in lnje-gun, kangwon-do. This is a good example of the accelerated bridge construction method for recovery of flood damaged road. The PSC girder bridge system introduced in this paper is a rapid construction method for bridge that can reduce the term of works over 50%.

  • PDF