• 제목/요약/키워드: PSC beam

Search Result 133, Processing Time 0.023 seconds

Experimental Test on Coner Rigid Joint Connection Method for Underground Roadway Structure (지하차도 구조물의 우각부 연결장치에 대한 실험적 평가)

  • Kim, Sung Bae;Kim, Jang Ho Jay;Kim, Tae Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.23-34
    • /
    • 2013
  • In this study, a safe, economic, and rapid construction method of underground roadway using PSC girder is developed to reduce traffic congestion and maximize space usage in urban area. For an efficient application of the method, a rigid joint connection is proposed and tested. For the testing, cantilever specimens were used to verify its capacity. The parameters for this study were cross beam length and joint connection type. The results of the test showed that the proposed connection system has superior performances. Despite having differences of cross beam length and joint connection type, the stable flexural behavior was shown in all of the tested specimens. Also, the behaviors of PSC girders and upper slabs connected by the proposed method showed superior performance. Moreover, the improvement of structure performance according to the increase of length of cross beams has been verified.

An Experimental Study for Structural Safety Evaluation of PSC Box Girder Bridge with FRP Struts (FRP 스트럿을 가진 PSC 박스거더교의 구조안전성 평가를 위한 실험 연구)

  • Song, Jae-Joon;Park, Jong-Hwa;Park, Kyung-Hoon;Jo, Byung-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.205-213
    • /
    • 2008
  • The structure of PSC box girder with FRP strut has a form of supporting the cantilever part in the widened upper slab by modifying the existing PSC box girder efficiently, and it is able to build an economical and aesthetically pleasing bridge as it reduces the size of the lower structure by reducing the self-weight of the upper structure. In this research, loading test of PSC Box Girder using full-scale mock-up was conducted and FEM analysis was performed. By comparing results, structural safety of the FRP strut and the upper slab following application of the strut in the PSC Box Girder Bridge were evaluated.

Numerical Analysis at Anchorage Zone Using Prestressing Order for PSC Bridges (PSC 교량 정착부의 강선긴장순서에 대한 수치해석 연구)

  • Jo, Byung-Wan;Tea, Gi-Ho;Oh, Sea-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.97-105
    • /
    • 2006
  • PSC box girder bridges usually have a lot of tendons, and the difference of the bursting forces lies in the prestressing order of the tendons. As a result of the lack of studies on the prestressing order for the bridges, the order depends on the designer's intuition and experiences. In this paper, with investigation into various methods determining the bursting force of the anchorage, reasonable prestressing order is determined by analysis of PSC beam bridge and PSC box girder bridge with most suitable method. It may be stated that this study would be useful for determining the reasonable prestressing order of tendons for the PSC box girder bridges.

An Experomental Study on the Connection of Diaphragm in Modular Bridge (조립식 교량의 가로보 연결에 관한 실험적연구)

  • Lee, Hyun Ho;Lee, Sang Seung;Cho, Doo Yong;Kim, Tae Wan;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.31-39
    • /
    • 2012
  • Recently new construction and reconstruction of the bridge have been required to minimize traffic congestion, environmental disadvantage, to reduce the period of construction, and to improve the quality and workability during the construction. For this reason, the application of modular bridge system, which is assembly of the structural members, is necessary to prepare for near future. Fall of girders can occur at the moment to connect between precast girders during the construction, so appropriate cross beams should be installed to solve the mentioned problem. In this study, understanding the structural characteristics and domestic and international case of cross beam, alternative cross beam system for modular bridge was developed. To inspect the structural characteristics of the alternative system, specimens were built and static loading test was performed. Afterward, the behavior of cross beam interms of joints and load distribution was observed. Experimental results were analyzed and compared with each data. Therefore, the appropriate cross beam system for modular bridge will be chosen and proposed in this paper.

Growth of Time-Dependent Strain in Reinforced Cement Concrete and Pre-stressed Concrete Flexural Members

  • Debbarma, Swarup Rn.;Saha, Showmen
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.79-85
    • /
    • 2012
  • This paper presents the differences in growth of time-dependent strain values in reinforced cement concrete (RCC) and pre-stressed concrete (PSC) flexural members through experiment. It was observed that at any particular age, the time-dependent strain values were less in RCC beams than in PSC beams of identical size and grade of concrete. Variables considered in the study were percentage area of reinforcement, span of members for RCC beams and eccentricity of applied pre-stress force for PSC beams. In RCC beams the time-dependent strain values increases with reduction in percentage area of reinforcement and in PSC beams eccentricity directly influences the growth of time-dependent strain. With increase in age, a non-uniform strain develops across the depth of beams which influence the growth of concave curvature in RCC beams and convex curvature in PSC beams. The experimentally obtained strain values were compared with predicted strain values of similar size and grade of plane concrete (PC) beam using ACI 318 Model Code and found more than RCC beams but less than PSC beams.

A Study of continuous PSC bridge with a reinforcement steel plate (보강강판을 이용한 연속 PSC 교량 공법에 관한 연구)

  • Koo Min-Se;Kim Hun-Hee;Jung Young-Do
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.422-429
    • /
    • 2005
  • It is limited to decrease height or section even by system conversion to indeterminate structure - continuous beam - in existing PSC girder bridges. In this study, the movement of connection is analyzed through actual field test, by increasing stiffness of negative moment area in continuous PSC bridge and developing continuous PSC bridge with embedded steel plate, that can overcome the demerit of existing connection. As a result, it is confirmed that the body unification of the connection is being realized and maintained. Moreover, the height of a span is suggested in continuous PSC girder bridge with embedded steel plate by computational analysis

  • PDF

Load and Deflection Recovery Capacities of PSC Girder with Unbonded PS H-Type Steel

  • Kim, Jong Wook;Kim, Jang-Ho Jay;Kim, Tae-Kyun;Lee, Tae Hee;Yang, Dal Hun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1336-1349
    • /
    • 2018
  • Generally, a precast prestressed concrete (PSC) beam is used as girders for short-to-medium span (less than 30 m) bridges due to the advantages of simple design and construction, reduction of construction budget, maintenance convenience. In order to increase the span length beyond 50 m of precast PSC girder, PSC hollow box girder with unbonded prestressed H-type steel beam placed at the compressive region is proposed. The unbonded compressive prestressing in the H-type steel beams in the girder is made to recover plastic deflection of PSC girder when the pre-stressing is released. Also, the H-steel beams allow minimization of depth-to-length ratio of the girder by reducing the compressive region of the cross-section, thereby reducing the weight of the girder. A quasi-static 3-point bending test with 4 different loading steps is performed to verify safety and plastic deflection recovery of the girder. The experimental results showed that the maximum applied load exceeded the maximum design load and most of the plastic deflection was recovered when the compressive prestressing of H-type steel beams is released. Also using prestressed H-type steel as compression reinforcements in the upper part of cross section, repair and restoration difficulty and cost of PSC girders should be significantly reduced. The study result and analysis are discussed in detail in the paper.

Effects of Prestressing Force on the Natural Frequency of a PSC Beam (PSC 보의 고유진동수에 미치는 긴장력의 영향)

  • Koo Min-Se;Lee Ho-Kyung;Lee Ju-Beom
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.408-415
    • /
    • 2005
  • Existing results of some related experiments report that variation in the magnitude of prestressing force may leads to a change of dynamic properties of a PSC girder system. Since a usual dynamic equilibrium equation doesn't explain these phenomena, a modified dynamic equilibrium equation is derived in this paper by considering prestressing force as an internal energy of the system. The derived equation is applied to a modified beam element model is proposed. The proposed model validated by comparing the natural frequencies computed by the model with those from an existing experiment result.

  • PDF

Sensitivity analysis of time-dependent behaviors of PSC flexural members (프리스트레스트 훰 부재의 시간 종속적 거동에 관한 민감도 해석)

  • 김민주;김동기;김택중;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.119-124
    • /
    • 2001
  • A general procedure to implement the sensitivity analysis of PSC flexural members is proposed based on the analytical calculation of the gradients of stresses and strains with respect to the 21 design variables in a closed format. The formulation covers the long term losses including concrete creep, shrinkage, and PS steel relaxation as well as load effects. The derived formulation is applied to the rectangular section PSC beam with prestressing and nonprestressing steels for the sensitivity analysis. The analytically calculated sensitivity results are compared with those numerically calculated.

  • PDF