• Title/Summary/Keyword: PROCESS ADDITIVES

Search Result 515, Processing Time 0.027 seconds

A Study on the Microstructure Formation of Sn Solder Bumps by Organic Additives and Current Density (유기첨가제 및 전류밀도에 의한 Sn 솔더 범프의 미세조직 형성 연구)

  • Kim, Sang-Hyeok;Kim, Seong-Jin;Shin, Han-Kyun;Heo, Cheol-Ho;Moon, Seongjae;Lee, Hyo-Jong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.47-54
    • /
    • 2021
  • For the bonding of smaller PCB solder bumps of less than 100 microns, an experiment was performed to make up a tin plating solution and find plating conditions in order to produce a bump pattern through tin electroplating, replacing the previous PCB solder bumps process by microballs. After SR patterning, a Cu seed layer was formed, and then, through DFR patterning, a pattern in which Sn can be selectively plated only within the SR pattern was formed on the PCB substrate. The tin plating solution was made based on methanesulfonic acid, and hydroquinone was used as an antioxidant to prevent oxidation of divalent tin ions. Triton X-100 was used as a surfactant, and gelatin was used as a grain refiner. By measuring the electrochemical polarization curve, the characteristics of organic additives in Triton X-100 and gelatin were compared. It was confirmed that the addition of Triton X-100 suppressed hydrogen generation up to -1 V vs. NHE, whereas gelatin inhibited hydrogen generation up to -0.7 V vs. NHE. As the current density increased, there was a general tendency that the grain size became finer, and it was observed that it became finer when gelatin was added.

Size Effect of Hollow Silica Nanoparticles as Paint Additives for Thermal Insulation (단열 페인트 첨가제로써 중공형 실리카 나노입자의 크기에 따른 효과)

  • Kim, Jisue;Kim, Younghun
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.18-23
    • /
    • 2022
  • Using air as an insulator due to its low heat transfer coefficient has been studied and has been widely commercialized to save energy in the field of thermal insulation technology. In this study, we analyzed the heat insulating effect of hollow silica nanoparticles mixed in non-uniform size, and the maximum heat insulating efficiency of these particles given the limited number of particles that can be mixed with a medium such as paint. The hollow silica nanoparticles were synthesized via a sol-gel process using a polystyrene template in order to produce an air layer inside of the particles. After synthesis, the particles were analyzed for their insulation effect according to the size of the air layer by adding 5 wt % of the particles to paint and investigating the thermal insulation performance by a heat transfer experiment. When mixing the particles with white paint, the insulation efficiency was 15% or higher. Furthermore, the large particles, which had a large internal air layer, showed a 5% higher insulation performance than the small particles. By observing the difference in the insulation effect according to the internal air layer size of hollow silica nanoparticles, this research suggests that when using hollow particles as a paint additive, the particle size needs to be considered in order to maximize the air layer in the paint.

The Effects of Hydroxyl Radical Generation by Means of the Addition of $H_2O_2$ and $Fe^{3+}-EDTA$ in the Electron-beam Process (전자빔 공정에서 $H_2O_2$$Fe^{3+}-EDTA$의 첨가가 수산화라디칼 생성에 미치는 영향)

  • Kwon, Bumgun;Kwon, Joongkuen;Kim, Jongoh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.69-76
    • /
    • 2012
  • This study focuses both on the quantitative measurement of hydroxyl radicals formed by an electron beam (E-beam) process and on the decomposition of pentachlorophenol(PCP) in the presence of $H_2O_2$ and $Fe^{3+}-EDTA$ as additives. To attain this objective, the quantitative measurement of hydroxyl radical was performed with the hydroylation of benzoic acid (BA), producing hydroxybenzoic acid (OHBA). As a result, the concentrations of hydroxyl radical measured were lower than those of hydroxyl radical predicted. Probably, it indicates that the reactive species generated during E-beam irradiation are able to scavenge the hydroxyl radicals. In particular, the degradation of PCP was promoted by the addition of $H_2O_2$ (< 1mM). On the other hand, its degradation as well as the generation of chloride ions as a by-product was inhibited by the addition of $H_2O_2$ (> 1mM), and thus carbon yield(%) of oxalic acid as a by-product was increased. During E-beam irradiation the addition of $Fe^{3+}-EDTA$ effectively decomposed the PCP, thus increasing the G-values. Considering the formation of OHBA and the decomposition of PCP, these results suggest that the addition of $Fe^{3+}-EDTA$ in the E-beam process can produce the further hydroxyl radicals and enhance the efficiency of PCP decomposition at low dose.

Effect of Curing Additives on Color Property of Smoked Duck Meat (염지제가 훈연오리의 육색 특성에 미치는 영향)

  • Kang, Geunho;Cho, Soohyun;Seong, Pil-Nam;Park, Kyoungmi;Kang, Sun Mun;Park, Beom-Young
    • Korean Journal of Poultry Science
    • /
    • v.40 no.3
    • /
    • pp.179-185
    • /
    • 2013
  • This study was conducted to investigate the effect of curing additives on color property of smoked duck meat. Curing process of samples was performed one of the following treatments: C, non-curing: T1, 2.43% salt: T2, 2.43% salt + 0.49% tripolyphosphate (TPP): T3, 2.43% salt + 0.49% TPP + 0.002% nitrite: T4, 4.76% duck seasoning: and T5, 1.47% salt + 0.24% TPP + 0.2% L-ascorbic acid. Instrumental meat color of both breast and thigh of smoked duck showed that the CIE $a^*$ value of the T4 was significantly (p<0.05) higher than that of the other treatments, whereas T5 had a significantly (p<0.05) higher CIE $b^*$ value than the other treatments. In results of nitroso pigment, T5 of smoked duck breast was significantly (p<0.05) higher value compared to other treatments, whereas T3 and T5 of smoked duck thigh had a significantly (p<0.05) higher value than other treatments. Heme pigment contents of control and T5 was significantly (p<0.05) higher value compared to other treatments in smoked duck breast. Meat color of T3 by sensory evaluation showed redder (p<0.05) than other treatments. These results suggested that using L-ascorbic acid is revealed to be pink color without nitrite or pigment when manufacturing of smoked duck meat.

A Feasibility Study on the Use of Liner and Cover Materials Using Sewage Sludge (하수슬러지의 차수재 및 복토재로의 이용타당성에 관한 연구)

  • 유남재;김영길;박병수;정하익
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.43-71
    • /
    • 1999
  • This research is an experimental work of developing a construction material using municipal wastewater sludge as liner and cover materials for waste disposal landfill. Weathered granite soil and flyash, produced as a by-product in the power plant, were used as the primary additives to improve geotechnical engineering properties of sludge. For secondary additives, bentonite and cement were mixed with sludge to decrease the permeability and to increase the shear strength, respectively. Various laboratory test required to evaluate the design criteria for liner and cover materials, were carried out by changing the mixing ratio of sludge with the additives. Basic soil properties such as specific gravity, grain size distribution, liquid and plastic limits were measured to analyze their effects on permeability, compaction, compressibility and shear strength properties of mixtures. Laboratory compaction tests were conducted to find the maximum dry densities and the optimum moisture contents of mixtures, and their effectiveness of compaction in field was consequently evaluated. Permeability tests of variable heads with compacted samples, and the stress-controlled consolidation tests with measuring permeabilities of samples during consolidation process were performed to obtain permeability, and to find the compressibility as well as consolidational coefficients of mixtures, respectively. To evaluate the long term stability of sludges, creep tests were also conducted in parallel with permeability tests of variable heads. On the other hand, for the compacted sludge decomposed for a month, permeability tests were carried out to investigate the effect of decomposition of organic matters in sludges on its permeability. Direct shear tests were performed to evaluate the shear strength parameters of mixed sludge with weathered granite, flyash and bentonite. For the mixture of sludge with cement, unconfined compression tests were carried out to find their strength with varying mixing ratio and curing time. On the other hand, CBR tests for compacted specimen were also conducted to evaluate the trafficability of mixtures. Various test results with mixtures were assessed to evaluate whether their properties meet the requirements as liner and cover materials in waste disposal landfill.

  • PDF

Mass Reduction and Physicochemical Properties of the Produced Compost during Composting Domestic Food Wastes in a Small Composter (소형 퇴비화용기에서 가정 음식물쓰레기의 퇴비화 과정 중 감량화 및 생산 퇴비의 물리화학적 특성)

  • Park, Ju-Won;Seo, Jeoung-Yoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.238-243
    • /
    • 2001
  • Mass reduction and physicochemical properties of the produced compost were investigated during composting domestic food wastes without additive. A small composter used in this study had the height of 15 cm from the center of bottom half circle (diameter 24 cm) up to under the lid, the side length of 50 cm and the horizontal lid angle of $50^{\circ}$ and was operated at the heating unit temperature of $85^{\circ}$. It was mixed by the rotating arm for two minutes in every half hour while supplied with air flow at 3 L/min for 10 minutes in every half hour. This condition was found in a preliminary experiment as optimal for keeping the water content of composting material in the optimal range without adding any bulking materials. The domestic food wastes were added into the composter at the rate of 1 kg/day without additives during composting. The results were as follows; during the composting process, water content maintained in the range of $51.0{\sim}53.5%$. Hemicellulose and lignin contents did not show any tendency, but cellulose content decreased. During the composting process, $NH_3-N$ and $NO_2-N$ were not detected due to nitrification. The contents of inorganic compounds did not increase during the composting process. They were in the range of $1.32{\sim}1.71%\;P_2O_5$, $1.29{\sim}1.48%\;CaO$, $0.41{\sim}0.49%\;MgO$, and $0.38{\sim}0.74%\;K_2O$. For 20 days, weight reduction rate was 67.5% in wet basis, and decomposition rate was 48% in dry basis. Concentration of heavy metals (Cu, Cr, Cd, Pb, Zn, Hg, As) was less than the limiting value of the compost. Maturity of the produced compost was 3 grade through reaching maximum temperature of $46{\sim}48^{\circ}C$.

  • PDF

Food Quality Comparison of Dried Persimmons (Diospyros kaki THUNB) When using Medicinal Plant Extracts and Food Additives during Drying Process (약용식물 추출물 및 식품첨가제가 곶감 식품학적 품질 비교)

  • Kim, Ki-Ho;Kim, Kyung-Min
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.1
    • /
    • pp.10-17
    • /
    • 2014
  • This study presents an eco-friendly persimmon drying system to satisfy consumer preferences and provide a popular food for both the domestic and international markets. The most effective antimicrobial compounds were developed from a combination of plant extracts (18.18% clove buds, 9.90% cinnamon, 9.09% licorice, 4.55% cnidium, 4.55% seed of grapefruit, and 54.54% apple vinegar). The dried persimmons were evaluated as regards their moisture and sugar content, weight, hardness, and color value. During the drying process, the overall moisture content of the persimmons increased, along with the sugar content. The hardness was almost the same for each region and decreased on an average of 0.5~0.86 after 6 weeks. As regards the chromaticity, ${\Delta}E$ decreased during the drying process, while L-value became darker and a-value showed a dark red color over time.

A Study on the Self-annealing Characteristics of Electroplated Copper Thin Film for DRAM Integrated Process (DRAM 집적공정 응용을 위한 전기도금법 증착 구리 박막의 자기 열처리 특성 연구)

  • Choi, Deuk-Sung;Jeong, Seung-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.61-66
    • /
    • 2018
  • This research scrutinizes the self-annealing characteristics of copper used to metal interconnection for application of DRAM fabrication process. As the time goes after the copper deposited, the grain of copper is growing. It is called self-annealing. We use the electroplating method for copper deposition and estimate two kinds of electroplating chemicals having different organic additives. As the time of self-annealing is elapsed, sheet resistance decreases with logarithmic dependence of time and is finally saturated. The improvement of sheet resistance is approximately 20%. The saturation time of experimental sample is shorter than that of reference sample. We can find that self-annealing is highly efficient in grain growth of copper through the measurement of TEM analysis. The structure of copper grain is similar to the bamboo type useful for current flow. The results of thermal excursion characteristics show that the reliability of self-annealed sample is better than that of sample annealed at higher temperature. The self-annealed sample is not contained in hillock. The self-annealed samples grow until $2{\mu}m$ and develop in [100] direction more favorable for reliability.

Study on the Copper Electro-refining from Copper Containing Sludge (저품위 동(Cu) 함유 슬러지로부터 동 전해정련에 관한 연구)

  • Lee, Jin-Yeon;Son, Seong Ho;Park, Sung Cheol;Jung, Yeon Jae;Kim, Yong Hwan;Han, Chul Woong;Lee, Man-seung;Lee, Ki-Woong
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.84-90
    • /
    • 2017
  • The electro-refining process was performed to recovery high purity copper from low grade copper containing sludge in sulfuric acid. The surface morphologies and roughness of electro-refining copper were analyzed with variation of the type and concentration of organic additives, the best surface morphology was obtained 5 ppm of the gelatin type and 5 to 10 ppm of the thiol type organic additive. The crude metal consisted of copper with 86.635, 94.969 and 99.917 wt.%, several impurity metals of iron, nickel, cobalt and tin by pyro-metallurgical process. After electro-refining process, the purity of copper increases to 3N or 4N grade. The impurity concentrations and copper purities of copper crude metals, electrolyte and electro-refining copper were analyzed using ICP-OES, the electro-refining time and purity of copper crude metal to recover 4N grade copper were deduced.

The Study on the Strength Improvement $CO_2$ Mold Bonded With High Mole-Ratio Sodium Silicates (고(高)MOLE비(比)의 규산(珪酸)소다를 사용(使用)한 $CO_2$ 주형(鑄型)의 강도개선(强度改善)에 관(關)한 연구(硏究))

  • Kim, Bong-Wan;Lee, Kye-Wan
    • Journal of Korea Foundry Society
    • /
    • v.7 no.4
    • /
    • pp.366-379
    • /
    • 1987
  • The influences of some factors on the variation of compression strength of $CO_2$ process were investigated with an attention given to use of high $SiO_2\;/Na_2O$ silicate, addition of organics and gassing operation. 1) Higher ratio binder offers faster rates of hardening with lower $CO_2$ consumption requiring more concentration for a good strength development. A mixture containing 4 percent of 2.7:1 ratio silicate produces the strength above $8kg\;/\;cm^2$ after 80 seconds gassing, but 5% and 6% respectively of 3.0:1 and3.3:1 ratio silicate are necessary to achieve equivalent levels of strength. 2) The correct water content in sand mixtures containing higher ratio silicates is necessary for the better strength properties to be obtained. The addition of 1% water to the sand mixtures bonded with 5%,3:1 ratio and 6%,3.3:1 ratio silicates maintains near-maximum strength on extended gassing. 3) When higher ratio silicates with 3:1 and 3.3:1 ratios are used,the addition of organic additives such as oil, sucrose and polyol results in considerable changes in strength. The presence of 1.0 to 1.5 percent of polyol produces a noticiable improvement 4) Gas diluted with air raises the efficiency of gas utilization. When gas contains 50 percent $CO_2$, the efficience is significantly increased with the best strength in the silicates having high ratios of 3:1 and 3.3:1. 5) The strength of molds is liable to change on storage with the reduction in water content. The magnitude of the strength change is determinded with the mole ratio. The presence of polyol in the mixture with 3.3:1 ratio silicate has a pronounced effect on maintaining the gassed strength.

  • PDF