• Title/Summary/Keyword: PRESSING

Search Result 1,792, Processing Time 0.029 seconds

Deep Drawing With Internal Air-Pressing to Increase The Limit Drawing Ratio of Aluminum Sheet

  • Moon, Young-Hoon;Kang, Yong-Kee;Park, Jin-Wook;Gong, Sung-Rak
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.459-464
    • /
    • 2001
  • The effects of internal air-pressing on deep drawability are investigated in this study to increase the deep drawability of aluminum sheet. The conventional deep drawing process is limited to a certain limit drawing ratio(LDR) beyond which failure will occur. The intention of this work is to examine the possibilities of relaxing the above limitation through the deep drawing with internal air-pressing, aiming towards a process with an increased drawing ratio. The idea which may lead to this goal is the use of special punch that can exert high pressure on the internal surface of deforming sheet during the deep drawing process. Over the ranges of conditions investigated for Al-1050, the local strain concentration at punch nose radius area was decreased by internal air-pressing of punch, and the deep drawing with internal air-pressing was proved to be very effective process for obtaining higher LDR.

  • PDF

Effect of Ceramic Ball Inclusion on Densification of Metal Powder Compact (삽입된 세라믹 볼이 금속분말성형체의 치밀화에 미치는 영향)

  • Park, Hwan;Yu, Yo-Han;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.29-37
    • /
    • 2000
  • The effect of a ceramic ball inclusion on densification behavior of a metal powder compact was investigated under cold isostatic pressing, pressureless sintering and hot isostatic pressing. To simulate those processes, proper constitutive models were implemented into a finite element program (ABAQUS). Measured density distributions of metal powder compacts were also compared with finite element results and showed the same trend with simulated results. Residual stress distributions were calculated by finite element analysis to study the effect of ceramic ball inclusions with different thermal expansion coefficients. The higher residual stress was observed in a metal powder compact when the difference between thermal expansion coefficients for a ceramic ball and metal powder became larger. Samples produced by Wing showed more uniform density distributions and lower residual stresses compared to those by sintering after cold isostatic pressing. For various sizes of ceramic ball inclusions, densification and deformation of powder compacts were also studied during hot isostatic pressing.

Warm Isostatic Pressing of Metal Powder by a Rubber Mould (고무 몰드를 이용한 금속 분말의 온간 등가압 성형)

  • Yang, Hun-Cheol;Lee, Ji-Wan;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1831-1841
    • /
    • 2002
  • The effect of a rubber mould on densification and deformation of aluminum alloy powder was investigated during warm isostatic pressing. The hyperelastic constitutive equations based on various strain energy potentials were employed to analyze deformation of rubber. The parameters in the strain energy potentials were obtained from experimental data for uniaxial and volumetric compression of Viton rubber at two warm temperatures. For elastoplastic response, the yield function of Shima and Oyane was implemented into a finite element program (ABAQUS) to predict compaction responses of metal powder during warm isostatic pressing. Finite element results were compared with experimental data for densification and deformation of aluminum alloy powder with/without a rubber mould under warm die pressing.

Influences of Wet-Pressing Types on Internal Structure of Paper (습부압착 방식이 종이의 내부구조에 미치는 영향)

  • Lee Jin-Ho;Park Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.4 s.112
    • /
    • pp.32-37
    • /
    • 2005
  • To Increase the productivity of a paper machine, the maximization of the machine speed is a kind of simple way As the machine speed increases, more intense wet pressing is required to persist the outlet consistency of press part and reduce the water removal of dryer part. With more intense pressing, there are concerns that the quality of paper will be affected. This study was carried out to evaluate the influence of wet-pressing on internal structure of paper, The nip pressure at the first and third nip in triple nip press was controlled. Paper structures, strength properties and pore properties were evaluated. As a result, first nip pressure more strongly influenced the paper structural properties than third nip pressure in triple nip pressing condition. Because of the high water content and low wet-web strength of paper web in first nip, increasing the first nip pressure induced the incipient crushing of wet-web and then caused a potential of web break during the following coating or printing processes.

Optimal Shape Design of a Container Under Hot Isostatic Pressing by a Finite Element Method (열간등가압소결 공정에서 유한요소법을 이용한 컨테이너 형상의 최적설계)

  • Jeong, Seok-Hwan;Park, Hwan;Jeon, Gyeong-Dal;Kim, Gi-Tae;Hwang, Sang-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2211-2219
    • /
    • 2000
  • Near net shape forming of 316L stainless steel powder was investigated under hot isostatic pressing. To simulate densification and deformation of a powder compact in a container during hot isostatic pressing, the constitutive model of Abouaf and co-workers was implemented into a finite element analysis. An optimal design technique based on the design sensitivity was applied to the container design during hot isostatic pressing. The optimal shape of the container was predicted from the desired final shape of a powder compact by iterative calculations. Experimental data of 316L stainless steel powder showed that the optimally designed container allowed precise forming of the desired powder compact during hot isostatic pressing.

Microstructures and Tensile Properties of $A_2O_3$ Short Fiber/Al-Si-Mg Alloy Composites Fabricated by Rheo-compocasting and Hot Pressing (Rheo-compocasting 및 Hot Pressing에 의하여 제조한 $Al-Si-Mg/Al_2O_3$ 단섬유강화 복합재료의 조직 및 인장특성)

  • Kwak, Hyun-Man;Lee, Hag-Ju
    • Journal of Korea Foundry Society
    • /
    • v.13 no.6
    • /
    • pp.547-554
    • /
    • 1993
  • Aluminum alloy matrix composites reinforced with various amounts of $Al_2O_3$ short fibers have been produced by rheo-compocasting accompanied by hot pressing. When composites reinforced with fibers are produced by rheo-compocasting, S-L process is the most effective method for homogeneous dispersion of fibers. A sound composites with the improved orientation(3 dimension${\rightarrow}$2 dimension) of the fibers and increased volume fraction of them have been fabricated through the hot pressing of the casted composites. Fibers are broken down when rheo-compocasting, hot pressing, and $T_6$ treating. Among them fibers are broken down most heavily in the hot pressing. And even in the case of the composite reinforced with 30 vol% fibers, which showed the hardest fiber break down, aspect ratio(11.6) is higher than critical aspect ratio(10.7). The fiber strengthening effect in the composites has showed upto 573K. As the test temperature increases to the range of 573K, the effect has been higher. The fracture of composites is controlled by fiber from room temperature to 473K, but the fracture of composites is controlled by interface between fiber and matrix alloy above 473K.

  • PDF

A Study on Pressing Conditions in the molding of Aspheric Glass Lenses for Phone Camera Module using Design of Experiments (DOE를 적용한 카메라폰 모듈용 비구면 Glass 렌즈의 가압성형조건 연구)

  • Kim, Hye-Jeong;Cha, Du-Hwan;Lee, Jun-Key;Kim, Sang-Suk;Kim, Jeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.720-725
    • /
    • 2007
  • This study investigated the pressing conditions in the molding of aspheric glass lenses for the mega pixel phone camera module using the DOE method. Tungsten carbide (WC; Japan, Everloy Co., 002K),which contained 0.5 w% cobalt (Co), was used to build the mold. The mold surface was ultra-precision ground and polished, and its form accuracy (PV) was 0.85um in aspheric surface. We selected four factors, pressing temperature, force and time of first step, and force of second step, respectively, as the parameters of the pressing process. in order to reduce the number of experiments, we applied fractional factorial design considering the main effects and two-way interactions. The analysis results indicate that the only two main effects, the pressing temperature and the time of pressing step 1, are available for the form accuracy (PV) of the molded lens. The analysis results indicated that the best combination of the factors for lowering the form accuracy(PV) value of molded lens was to have them at their low levels.

Numerical Simulation for Pressing Process of Hot glass (고온 유리의 프레스 성형 공정 시뮬레이션)

  • Ji Suk Man;Choi Joo Ho;Kim Jun Bum;Ha Duk Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.205-213
    • /
    • 2005
  • This paper addresses a method for numerical simulation in the pressing process of hot glass. Updated Lagrangian finite element formulations are employed for the flow and energy equations to accommodate moving meshes. The model is assumed axi-symmetric and creep flow is assumed due to the high viscosity. Commercial software ANSYS is used to solve the coupled flow and energy equations. Moving contact points as well as free surface during the pressing are effectively calculated and updated by utilizing API functions of CAD software Unigraphics. The mesh distortion problem near the wall is overcome by automatic remeshing, and the temperatures of the new mesh are conveniently interpolated by using a unique function of ANSYS. The developed model is applied to the pressing process of TV glasses. In conclusion, the presented method shows that the pressing process accompanying moving boundary can be simulated by effectively combining general purpose software without resorting to special dedicated codes.

Relationship Between Refining, Wet Pressing and Fracture Toughness, Fracture Elongation -Fibers activation and fines activation- (고해와 압착에 의한 파괴 인성과 파괴 신장률의 변화 -섬유 활성화와 미세분 활성화-)

  • Lee, Jin Ho;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.4 s.107
    • /
    • pp.9-15
    • /
    • 2004
  • To increase paper strength, refining and wet pressing are performed. Many researches were carried out to identify the origin of paper strength. Since fracture toughness was governed by stress concentration, fracture toughness reflects microscopic paper strength. The aim of this paper is to analyze how paper strength was affected by changes of refining and wet-pressing. Fiber properties and structural, tensile and fracture properties of hand­sheets were evaluated. Especially, fracture toughness was evaluated by J-integral. As the refining proceeds, stock properties maybe divided into two stages such as fibers activation and fines activation according to freeness. In fibers activation stages, about 750-450 mL CSF, the fracture toughness increased with refining and wet pressing but in fines activation stages, about 450-250 mL CSF, the fracture toughness increased only with wet pressing. It is clear that fracture toughness was affected not only by fibers properties but also by fines properties in fines activation stages.