• 제목/요약/키워드: PN Guidance

검색결과 15건 처리시간 0.025초

Spacecraft Guidance Algorithms for Asteroid Intercept and Rendezvous Missions

  • Hawkins, Matt;Guo, Yanning;Wie, Bong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.154-169
    • /
    • 2012
  • This paper presents a comprehensive review of spacecraft guidance algorithms for asteroid intercept and rendezvous missions. Classical proportional navigation (PN) guidance is reviewed first, followed by pulsed PN guidance, augmented PN guidance, predictive feedback guidance, Lambert guidance, and other guidance laws based on orbit perturbation theory. Optimal feedback guidance laws satisfying various terminal constraints are also discussed. Finally, the zero-effort-velocity (ZEV) error, analogous to the well-known zero-effort-miss (ZEM) distance, is introduced, leading to a generalized ZEM/ZEV guidance law. These various feedback guidance laws can be easily applied to real asteroid intercept and rendezvous missions. However, differing mission requirements and spacecraft capabilities will require continued research on terminal-phase guidance laws.

Effects of time-to-go freezing on PN guidance loop stability

  • Rew, Dong-Young;Tahk, Min-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.283-286
    • /
    • 1995
  • Due to finite bandwidth of missile dynamics, guidance commands in PN guidance tend to diverage as the missile approaches to the target. In this paper, a new method based on the short-time stability theorem is introduced to extend the stability region.

  • PDF

단거리 지대공 유도무기에서의 시선지령식 유도법칙과 비례항법 유도법칙의 성능비교 (Performance Comparisons between Command to Line-of-Sight Guidance Law and Proportional Navigation Guidance Law in Short Range Surface-to-Air Missile)

  • 이연석;유악환;김양우
    • 제어로봇시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.273-278
    • /
    • 2007
  • In this paper, a performance comparison between CLOS(Command to Line-of-Sight) guidance law and PN(Proportional Navigation) guidance law is made, based on a short range surface-to-air missile simulation program called KNUCLOS. This simulation program has a full nonlinear aerodynamic missile model, a tracker model for missile and target, and target model. According to the simulation results, the PN guidance law has a better performance than CLOS guidance law under various target speed.

기동표적에 대한 입사각 정의와 입사각 제어 유도법칙 (Definition of Impact Angle and Impact Angle Control Law Against Maneuvering Target)

  • 김현승;박상섭;유창경
    • 한국항공우주학회지
    • /
    • 제43권8호
    • /
    • pp.669-676
    • /
    • 2015
  • 본 논문에서는 기동하는 표적에 대한 입사각 제어 유도법칙을 제안하였다. 제안된 유도법칙은 정지표적에 대한 최적입사각제어 유도법칙을 변형한 것으로서 기존의 PN(Proportional Navigation) 유도법칙에 입사각제어 항이 추가된 바이어스 PN 유도법칙의 형태를 갖는다. 시선각, 비행경로각, 그리고 표적에 대한 상대 비행경로각 관점에서의 세 가지 다른 종류의 입사각을 정의하였다. 다양한 공대공 교전 시나리오에 대한 수치 시뮬레이션을 통해 제안한 유도법칙의 성능을 검증하였다.

수동형 탐색기의 시선 각속도 측정을 이용한 접근속도 추정 (Missile closing velocity estimation based on the LOS rate measurement)

  • 탁민제;류동영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.268-273
    • /
    • 1991
  • Missile and target closing velocity is used in the proportional navigation(PN) missile guidance loop. But it is difficult to estimate the closing velocity when passive seeker is used and only the Line-of-Sight(LOS) rate is available in the guidance loop. In this study, new closing velocity estimation method is developed. This method uses LOS rate measurement only and uses some characteristics of PN guidance law. The Lyapunov method is used to analyze the stability of the developed estimation method.

  • PDF

PN 유도 기반 능동 RF 탐색기 조우 시나리오에서 반복형 능동 유인체 대응에 따른 공중 플랫폼 생존성 분석 (Survivability for Airborne Platform on Encounter Scenarios where Repeater-type Active Decoy Counteracts Active RF Seeker System Operating Based on PN Guidance Law)

  • 임재원;정기환;이현수;고일석
    • 한국전자파학회논문지
    • /
    • 제29권4호
    • /
    • pp.256-265
    • /
    • 2018
  • 본 논문에서는 PN 유도 법칙을 기반으로 동작하는 능동 RF 탐색기에 대한 반복형 능동 유인체의 재밍 환경에서 공중 플랫폼의 생존성을 분석한다. 플랫폼의 기동, 유인체의 RF 제원(spec), 탐색기의 접근 거리 및 방향 등 다른 조건의 여러 조우 시나리오에서 플랫폼에 대한 탐색기의 miss distance를 계산한다. Miss distance와 근접신관거리와의 비교를 통해 플랫폼의 생존 여부를 판별하며, 이를 기반으로 몇몇 조우 시나리오에서 플랫폼 생존 영역을 도출한다.

Alternative Capturability Analysis of PN Laws

  • Ryoo, Chang-Kyung;Kim, Yoon-Hwan;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권2호
    • /
    • pp.1-13
    • /
    • 2006
  • The Lyapunov stability theory has been known inadequate to prove capturability of guidance laws because the equations of motion resulted from the guidance laws do not have the equilibrium point. By introducing a proper transformation of the range state, the original equations of motion for a stationary target can be converted into nonlinear equations with a specified equilibrium subspace. Physically, the equilibrium subspace denotes the direction of missile velocity to the target. By using a single Lyapunov function candidate, capturability of several PN laws for a stationary target is then proved for examples. In this approach, there is no assumption of the constant speed missile. The proposed method is expected to provide a unified and simplified scheme to prove the capturability of various kinds of guidance laws.

LQ기법을 이용한 수중 운동체의 마지막(terminal) 유도 알고리즘 설계 (Design of terminal guidance algorithm for underwater vehicles using LQ technique)

  • 김삼수;이갑래;이재명;전완수;박성희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.620-628
    • /
    • 1991
  • For a Stationary moving-target. the design technique of guidance system for underwater vehicle with a seeker of st type is developed. Using perturbation theory, a new method which linearizes the nonlinear intercept geometry is proposed. On the basis of the linearized system modeling, LQ and PID design technique is used to determine the structure and gain of the guidance system. Some simulation results applied underwater engagement are represented to show that the proposed guidance law is superior to the other guidance laws as pursuit, Bang-Beng, PN APN.

  • PDF

OPTIMAL IMPACT ANGLE CONTROL GUIDANCE LAWS AGAINST A MANEUVERING TARGET

  • RYOO, CHANG-KYUNG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권3호
    • /
    • pp.235-252
    • /
    • 2015
  • Optimal impact angle control guidance law and its variants for intercepting a maneuvering target are introduced in this paper. The linear quadratic(LQ) optimal control theory is reviewed first to setup framework of guidance law derivation, called the sweep method. As an example, the inversely weighted time-to-go energy optimal control problem to obtain the optimal impact angle control guidance law for a fixed target is solved via the sweep method. Since this optimal guidance law is not applicable for a moving target due to the angle mismatch at the impact instant, the law is modified to three different biased proportional navigation(PN) laws: the flight path angle control law, the line-of-sight(LOS) angle control law, and the relative flight path angle control law. Effectiveness of the guidance laws are verified via numerical simulations.

백스텝핑 방법과 외란관측기법에 의한 미사일 제어시스템의 동역학을 고려한 미사일 유도법칙의 설계 (Design of a Missile Guidance Law via Backstepping and Disturbance Observer Techniques Considering Missile Control System Dynamics)

  • 송성호
    • 제어로봇시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.88-94
    • /
    • 2008
  • In this paper, a design method of a missile guidance command is presented considering the dynamics of missile control systems. The design of a new guidance command is based on the well-known PNG(propotional navigation guidance) laws. The missile control system dynamics cause the time-delays of the PN guidance command and degrade the performance of original guidance laws which are designed under the assumption of the ideal missile control systems. Using a backstepping method, these time-delay effects can be compensated. In order to implement the guidance command developed by the backstepping procedure, it is required to measure or calculate the successive time-derivatives of the original guidance command, PNG and other kinematic variables such as the relative distance. Instead of directly using the measurements of these variables and their successive derivatives, a simple disturbance observer technique is employed to estimate a guidance command described by them. Using Lyapunov method, the performance of a newly developed guidance command is analyzed against a target maneuvering with a bounded and time-varying acceleration.