• Title/Summary/Keyword: PN Guidance

Search Result 15, Processing Time 0.021 seconds

Spacecraft Guidance Algorithms for Asteroid Intercept and Rendezvous Missions

  • Hawkins, Matt;Guo, Yanning;Wie, Bong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.154-169
    • /
    • 2012
  • This paper presents a comprehensive review of spacecraft guidance algorithms for asteroid intercept and rendezvous missions. Classical proportional navigation (PN) guidance is reviewed first, followed by pulsed PN guidance, augmented PN guidance, predictive feedback guidance, Lambert guidance, and other guidance laws based on orbit perturbation theory. Optimal feedback guidance laws satisfying various terminal constraints are also discussed. Finally, the zero-effort-velocity (ZEV) error, analogous to the well-known zero-effort-miss (ZEM) distance, is introduced, leading to a generalized ZEM/ZEV guidance law. These various feedback guidance laws can be easily applied to real asteroid intercept and rendezvous missions. However, differing mission requirements and spacecraft capabilities will require continued research on terminal-phase guidance laws.

Effects of time-to-go freezing on PN guidance loop stability

  • Rew, Dong-Young;Tahk, Min-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.283-286
    • /
    • 1995
  • Due to finite bandwidth of missile dynamics, guidance commands in PN guidance tend to diverage as the missile approaches to the target. In this paper, a new method based on the short-time stability theorem is introduced to extend the stability region.

  • PDF

Performance Comparisons between Command to Line-of-Sight Guidance Law and Proportional Navigation Guidance Law in Short Range Surface-to-Air Missile (단거리 지대공 유도무기에서의 시선지령식 유도법칙과 비례항법 유도법칙의 성능비교)

  • Lee, Yeon-Seok;Liu, Yue-Huan;Kim, Yang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.273-278
    • /
    • 2007
  • In this paper, a performance comparison between CLOS(Command to Line-of-Sight) guidance law and PN(Proportional Navigation) guidance law is made, based on a short range surface-to-air missile simulation program called KNUCLOS. This simulation program has a full nonlinear aerodynamic missile model, a tracker model for missile and target, and target model. According to the simulation results, the PN guidance law has a better performance than CLOS guidance law under various target speed.

Definition of Impact Angle and Impact Angle Control Law Against Maneuvering Target (기동표적에 대한 입사각 정의와 입사각 제어 유도법칙)

  • Kim, Hyun-Seung;Park, Sang-Sup;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.669-676
    • /
    • 2015
  • In this paper, a guidance law for intercepting maneuvering target with a desired impact angle is proposed. The proposed guidance law is modified from the optimal impact angle control law for a fixed target and given by a biased PN law with the impact angle control term in addition to the conventional PN law. Three different kinds of desired impact angles in the respect of LOS angle, flight path angle, and relative flight path angle to the target are defined. The performance of the proposed guidance law is investigated via numerical simulations for various air-to-air engagement scenarios.

Missile closing velocity estimation based on the LOS rate measurement (수동형 탐색기의 시선 각속도 측정을 이용한 접근속도 추정)

  • 탁민제;류동영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.268-273
    • /
    • 1991
  • Missile and target closing velocity is used in the proportional navigation(PN) missile guidance loop. But it is difficult to estimate the closing velocity when passive seeker is used and only the Line-of-Sight(LOS) rate is available in the guidance loop. In this study, new closing velocity estimation method is developed. This method uses LOS rate measurement only and uses some characteristics of PN guidance law. The Lyapunov method is used to analyze the stability of the developed estimation method.

  • PDF

Survivability for Airborne Platform on Encounter Scenarios where Repeater-type Active Decoy Counteracts Active RF Seeker System Operating Based on PN Guidance Law (PN 유도 기반 능동 RF 탐색기 조우 시나리오에서 반복형 능동 유인체 대응에 따른 공중 플랫폼 생존성 분석)

  • Rim, Jae-Won;Jung, Ki-Hwan;Lee, Hyunsoo;Koh, Il-Suek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.256-265
    • /
    • 2018
  • We herein analyze the survivability of an airborne platform when an active decoy delivers jamming attacks against an active RF seeker system that operates based on the proportional navigation guidance law. In encounter scenarios with various conditions, such as platform maneuvering, the decoy's RF specification, and the seeker's approaching range and angles, the missed distance of the RF seeker is evaluated. By comparing the missed distance with the proximity of the fuze range, the platform's survivability is determined and the survival area of the platform is drawn on several encounter scenarios.

Alternative Capturability Analysis of PN Laws

  • Ryoo, Chang-Kyung;Kim, Yoon-Hwan;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.1-13
    • /
    • 2006
  • The Lyapunov stability theory has been known inadequate to prove capturability of guidance laws because the equations of motion resulted from the guidance laws do not have the equilibrium point. By introducing a proper transformation of the range state, the original equations of motion for a stationary target can be converted into nonlinear equations with a specified equilibrium subspace. Physically, the equilibrium subspace denotes the direction of missile velocity to the target. By using a single Lyapunov function candidate, capturability of several PN laws for a stationary target is then proved for examples. In this approach, there is no assumption of the constant speed missile. The proposed method is expected to provide a unified and simplified scheme to prove the capturability of various kinds of guidance laws.

Design of terminal guidance algorithm for underwater vehicles using LQ technique (LQ기법을 이용한 수중 운동체의 마지막(terminal) 유도 알고리즘 설계)

  • 김삼수;이갑래;이재명;전완수;박성희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.620-628
    • /
    • 1991
  • For a Stationary moving-target. the design technique of guidance system for underwater vehicle with a seeker of st type is developed. Using perturbation theory, a new method which linearizes the nonlinear intercept geometry is proposed. On the basis of the linearized system modeling, LQ and PID design technique is used to determine the structure and gain of the guidance system. Some simulation results applied underwater engagement are represented to show that the proposed guidance law is superior to the other guidance laws as pursuit, Bang-Beng, PN APN.

  • PDF

OPTIMAL IMPACT ANGLE CONTROL GUIDANCE LAWS AGAINST A MANEUVERING TARGET

  • RYOO, CHANG-KYUNG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.235-252
    • /
    • 2015
  • Optimal impact angle control guidance law and its variants for intercepting a maneuvering target are introduced in this paper. The linear quadratic(LQ) optimal control theory is reviewed first to setup framework of guidance law derivation, called the sweep method. As an example, the inversely weighted time-to-go energy optimal control problem to obtain the optimal impact angle control guidance law for a fixed target is solved via the sweep method. Since this optimal guidance law is not applicable for a moving target due to the angle mismatch at the impact instant, the law is modified to three different biased proportional navigation(PN) laws: the flight path angle control law, the line-of-sight(LOS) angle control law, and the relative flight path angle control law. Effectiveness of the guidance laws are verified via numerical simulations.

Design of a Missile Guidance Law via Backstepping and Disturbance Observer Techniques Considering Missile Control System Dynamics (백스텝핑 방법과 외란관측기법에 의한 미사일 제어시스템의 동역학을 고려한 미사일 유도법칙의 설계)

  • Song, Seong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.88-94
    • /
    • 2008
  • In this paper, a design method of a missile guidance command is presented considering the dynamics of missile control systems. The design of a new guidance command is based on the well-known PNG(propotional navigation guidance) laws. The missile control system dynamics cause the time-delays of the PN guidance command and degrade the performance of original guidance laws which are designed under the assumption of the ideal missile control systems. Using a backstepping method, these time-delay effects can be compensated. In order to implement the guidance command developed by the backstepping procedure, it is required to measure or calculate the successive time-derivatives of the original guidance command, PNG and other kinematic variables such as the relative distance. Instead of directly using the measurements of these variables and their successive derivatives, a simple disturbance observer technique is employed to estimate a guidance command described by them. Using Lyapunov method, the performance of a newly developed guidance command is analyzed against a target maneuvering with a bounded and time-varying acceleration.