• Title/Summary/Keyword: PM Synchronous motor

Search Result 200, Processing Time 0.023 seconds

Power and loss characteristics of PMSM/G with double-sided Halbach magnetized rotor (양측식 Halbach 자화 회전자를 갖는 영구자석 동기 전동발전기의 출력 및 손실 특성)

  • Jang, Seok-Myeong;You, Dae-Joon;Choi, Sang-Kyou
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.723-724
    • /
    • 2008
  • The rotational loss is one of the most important problems for the practical applications of PM synchronous motor/generator. This rotational loss is divided as the mechanical loss by windage and bearing and iron loss by hysteresis loop and eddy current in the part of the magnetic field. So, In this paper, a double-sided PMSM/G without the iron loss is designed by analytical method of the magnetic field and estimation of the back-EMF constant represented as the design parameter. This design model consists of the double-sided PM rotor with Halbach magnetized array and coreless 3-phase winding stator. The results show that the double-sided PMSM/G without iron loss can be applicable to the required system without the rotational loss.

  • PDF

Levitation Control Experiment at Standstill in PM LSM Controlled-Repulsive Maglev Vehicle

  • Yoshida, Kinjiro;Takami, Hiroshi;Jozaki, Chiyuki;Kinoshita, Shiauo
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.119-124
    • /
    • 1998
  • This paper proposes a new repulsive-Maglev vehicle in which a vertical type PM linear synchronous motor (LSM) can levitate and propel simultaneously, independently of the vehicle speeds. A compact control method is developed which is based on the concept of controlling individually the levitation system by armature-current and the propulsion system by mechanical load-angle. The levitation-motion control experiments have carried out successfully together with positioning at standstill. The pitching motion has been compensated for very well by using the zero-phase-current control method proposed here.

  • PDF

Design of Cogging Torque and Torque Ripples Reduction for High Precision Controlled SPMSM (정밀제어용 표면부착형 영구자석 동기전동기의 코깅토크 및 토크리플 저감 설계)

  • Kim, Chang-Ki;Lee, Sang-Gon;Jung, Sang-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1923-1929
    • /
    • 2009
  • The design of SPMSM(surface mounted permanent magnet synchronous motor) has been performed to reduce cogging torque and torque ripples. In general, cogging torque and torque ripples are affected by the shapes of teeth width, yoke depth, magnet pole arc, etc. Particularly, the minimum design point of cogging torque and torque ripples are different so that the design of SPMSM should be done to compromise both of them for precision application. In this paper, the design of PMSM for EPS(electric power steering) system is performed to verify the validity, and the design characteristics versus teeth width, yoke depth, and magnet pole arc are investigated in order to find out the minimum point of cogging torque and torque ripples. In addition, skew of PM is applied for cogging torque reduction.

An Analysis on Core Loss Characteristics for Permanent Magnet Synchronous Generator considering the Load Conditions (부하조건을 고려한 영구자석형 동기발전기의 철손 특성 해석)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Kim, Hyun-Kyu;Lee, Sung-Ho;Sung, Tae-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.55-57
    • /
    • 2009
  • This paper deals with an improved core loss calculation under the load conditions, namely, no-load, AC-load and DC-load of multi-pole PM generator from curve fitting method using modified Steinmetz equation considered anomalous loss. For an accurate calculation, magnetic field analyses in stator core considering the time harmonics are performed. And using the nonlinear finite element analysis (FEA), we applied separated rotating and alternating magnetic field to core loss calculation. In order to verify the core loss results by proposed method, the experimental system for no-load core loss measurement has been implemented with DC motor, power analyzer and manufactured PM generator. And, the analysis results with rotational speed agree extremely well with those obtained by measurement.

  • PDF

Design and Characteristic Analysis for High-speed Interior Permanent Magnet Synchronous Motor with Ferrite Magnet (페라이트 영구자석을 갖는 고속 매입형 영구자석 전동기의 특성해석 및 설계)

  • Park, Hyung-Il;Shin, Kyung-Hun;Yang, Hyun-Sup;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1806-1812
    • /
    • 2016
  • We propose an interior permanent magnet syhchronous motor (IPMSM) with arc-shape ferrite permanent magnets (PMs) as a substitute for the rare-earth permanent magnet, and determine its optimal design through parametric study. First, we use 2D finite element analysis to analyze 4-poles and 6-slots initial model according to performance requirements and design parameters. The current angle of the maximum average torque considered in the analysis is different compared with the current angle of the minimum torque ripple. Thus, the parametric study for optimal rotor design is performed by varying the thickness and the offset radius of the PMs according to current angle. In particular, a narrow bridge is required in conventional IPMSM for reducing flux leakage; however, the increase in cogging torque in the analysis model saturates the narrow bridge (large offset radius). Therefore, we suggest an appropriate shape considering limiting conditions such as DC link voltage, average torque, torque ripple, and cogging torque taking into account performance requirements.

A Study on Auxiliary Pole and Teeth Combinations for Edge Effect Reduction of Stationary Discontinuous Armature PM-LSM with Concentrated winding (전기자 분산배치 집중권 PMLSM의 단부 효과 저감을 위한 보조극과 보조치 조합에 관한 연구)

  • Kim, Sung-Jin;Kim, Yong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1611-1616
    • /
    • 2012
  • Recently, the stationary discontinuous armature Permanent Magnet Linear Synchronous Motor(PM-LSM) was suggested as a driving source for long-distance transportation system. However, as these motors arrange armatures discontinuously, there occurs an edge which causes the cogging force. This works as a factor that bothers acceleration and deceleration that takes place when movers enter into and eject from the armatures. Therefore, installation of auxiliary teeth on the edge of armature of PM-LSM is suggested in order to reduce cogging force caused by the edge when the armature is placed in a discontinuous arrangement. But length of auxiliary teeth can be changed if install it with auxiliary pole in order to decrease more and more edge cogging force. On this, in the study, decided on a design variable of auxiliary teeth and used 2-D FEA, and examined edge cogging force characteristic along this in order to grasp length of auxiliary teeth changed according to installation positions of an auxiliary pole.

Core-loss Reduction on Permanent Magnet for IPMSM with Concentrated Winding (집중권을 시행한 영구자석 매입형 동기전동기의 철손 저감)

  • Lee, Hyung-Woo;Park, Chan-Bae;Lee, Byung-Song
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.135-140
    • /
    • 2012
  • Interior Permanent Magnet Synchronous motors (IPMSM) with concentrated winding are superior to distributed winding in the power density point of view. But it causes huge amount of eddy current losses on the permanent magnet. This paper presents the optimal permanent magnet V-shape on the rotor of an interior permanent magnet synchronous motor to reduce the core losses and improve the performance. Each eddy current loss on permanent magnet has been investigated in detail by using FEM (Finite Element Method) instead of equivalent magnetic circuit network method in order to consider saturation and non-linear magnetic property. Simulation-based design of experiment is also applied to avoid large number of analyses according to each design parameter and consider expected interactions among parameters. Consequently, the optimal design to reduce the core loss on the permanent magnet while maintaining or improving motor performance is proposed by an optimization algorithm using regression equation derived and lastly, it is verified by FEM.

Field Weakening Control of Permanent Magnet Synchronous Motor fed by Hysteresis Current Controlled PWM Inverter (히스테리시스 전류 제어형 PWM 인버터에 의한 영구자석 동기 전동기의 약계자 제어)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Yang, Chun-Suk;Yoon, Myung-Kyun;Yoo, Bo-Min
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.167-170
    • /
    • 1991
  • The back e.m.f. of PMSM is increased as the speed is increased and it saturates the current regulator because it counteracts the available output voltage of the inverter. In the PM motor, however, the required armature terminal voltage can be reduced within the maximum output voltage of the inverter by field weakening control, in which the air gap flux is weakened by the d-axis armature current. In this paper, the field weakening control of the surface PMSM fed by a hysteresis current control led PWM inverter based on the microprocessor is presented. To show the validity of the proposed control method, the simulation and experimental results are provided.

  • PDF

Inertia Estimation for a PM Synchronous Motor Based on MRAS(Model Reference Adaptive System) Observer (MRAS(Model Reference Adaptive System)를 이용한 영구자석동기전동기의 관성 추정)

  • Song, Ki-Young;Cho, Kwan-Yuhl;Kim, Hag-Wone;Lim, Byung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.179-181
    • /
    • 2013
  • 일반적인 전동기 구동에 있어서 부하의 변화에 의해 관성이 변하는 경우 동일 속도 제어기 이득에서의 속도 응답은 오버슈트가 생기거나 진동하는 문제점이 있다. 따라서 정확한 속도제어가 필요한 응용분야에서 전동기의 관성 추정은 필수이다. 본 논문에서는 MRAS 관측기를 활용하여 영구자석동기전동기의 관성을 추정하고 추정된 관성으로 속도제어기의 제어이득을 선정할 경우의 속도 응답특성을 비교한다.

  • PDF

Design of linear synchronous motor with slotted structure (치-슬롯을 갖는 직선형 동기 전동기의 설계 특성)

  • Jang, Seok-Myeong;You, Dae-Joon;Choi, Jang-Young;Park, Ji-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.197-199
    • /
    • 2006
  • This paper presents a analytical field solutions for the general class of Linear Brushless DC(LBLDC) motors with PM mover and 3-phase winding stator. In our magnetic field analysis, we have adopted an approach which can treat both magnetized material and winding from the each field analysis by magnetic vector potential considering 2-Dimensional slot modeling. Therefore, we give accurate analytical formulas and object function for design and parameters estimation by its magnetic field.

  • PDF