DOI QR코드

DOI QR Code

Core-loss Reduction on Permanent Magnet for IPMSM with Concentrated Winding

집중권을 시행한 영구자석 매입형 동기전동기의 철손 저감

  • 이형우 (한국철도기술연구원 고속철도연구본부) ;
  • 박찬배 (한국철도기술연구원 고속철도연구본부) ;
  • 이병송 (한국철도기술연구원 고속철도연구본부)
  • Received : 2011.11.21
  • Accepted : 2012.03.06
  • Published : 2012.04.30

Abstract

Interior Permanent Magnet Synchronous motors (IPMSM) with concentrated winding are superior to distributed winding in the power density point of view. But it causes huge amount of eddy current losses on the permanent magnet. This paper presents the optimal permanent magnet V-shape on the rotor of an interior permanent magnet synchronous motor to reduce the core losses and improve the performance. Each eddy current loss on permanent magnet has been investigated in detail by using FEM (Finite Element Method) instead of equivalent magnetic circuit network method in order to consider saturation and non-linear magnetic property. Simulation-based design of experiment is also applied to avoid large number of analyses according to each design parameter and consider expected interactions among parameters. Consequently, the optimal design to reduce the core loss on the permanent magnet while maintaining or improving motor performance is proposed by an optimization algorithm using regression equation derived and lastly, it is verified by FEM.

집중권 방식의 견인용 영구자석 매입형 동기전동기(IPMSM)는 출력밀도의 관점에서 우수하나 심각한 영구자석 와전류 손실을 가지고 있다. 본 논문에서는 영구자석 매입형 동기전동기의 자기적 특성을 분석하여 V-타입 회전자 영구자석의 각도와 폭을 변경함으로써 철손을 최소화하는 최적설계를 수행하였다. 자성체의 비선형성을 고려하기 위하여 자기등가회로법 대신 유한요소법을 이용하였으며, 각 파라메타가 영구자석에 발생하는 철손에의 영향 및 파라메타간의 교호작용을 파악하기 위하여 시뮬레이션 기반의 실험계획법을 사용하였다. 이를 통하여 모터의 성능을 유지하면서 철손을 상당히 줄인 집중권 방식의 영구자석 매입형 동기전동기의 최적설계를 반응표면법을 이용하여 도출하였으며, 유한요소법을 이용하여 이를 검증하였다.

Keywords

References

  1. K.-C. Kim (2008) A study on the optimal design and control performance of interior permanent magnet synchronous motor for EV/HEV, Ph.D Dissertation, Hanyang University, Korea (in Korean).
  2. F. Magunssen, P. Thelin, Sadarangani (2003) Design of compact permanent magnet machines for a novel HEV propulsion system, Proceedings of Electric Vehicle Symposium, USA.
  3. K.-J. Lee (2004) A study on the design of interior permanent magnet synchronous motor for HEV, Ph.D Dissertation, Hanyang University, Korea (in Korean).
  4. Katsumi Yamazaki, Yuji Kanou et al. (2010) Reduction of magnet eddy-current loss in interior permanent-magnet motors with concentrated windings, IEEE Transactions on Industry Applications, 46(6), pp. 2434-2441. https://doi.org/10.1109/TIA.2010.2073672
  5. Katsumi Yamazaki, Yu Fukushima and Makoto Sato (2009) Loss analysis of permanent-magnet motors with concentrated windings - Variation of magnet eddy-current loss due to stator and rotor shapes, IEEE Transactions on Industry Applications, 45(4), pp. 1334-1342. https://doi.org/10.1109/TIA.2009.2023393
  6. S.-H. Han, Thomas M. Jahns, Z.Q. Zhu. (2010) Analysis of rotor core eddy-current losses in interior permanent-magnet synchronous machines, IEEE Transactions on Industry Applications, 46(1), pp. 196-205. https://doi.org/10.1109/TIA.2009.2036666
  7. S.-B. Lee (2000) Example based Design of Experiment using the Minitab, Eretec Inc., Korea (in Korean).

Cited by

  1. A study on the Reduction of the Stator iron loss on Permanent Magnet Synchronous Motor for Light Railway Transit Propulsion System vol.15, pp.4, 2012, https://doi.org/10.7782/JKSR.2012.15.4.376
  2. Shape design method for high torque in the flux-weakening range of the IPMSM vol.64, pp.4, 2015, https://doi.org/10.5370/KIEE.2015.64.4.629
  3. Shape Design of IPMSM for the Reliability Improvement of Traction Motors vol.64, pp.5, 2015, https://doi.org/10.5370/KIEE.2015.64.5.817
  4. Analysis of Eddy Current Loss on Permanent Magnets of Interior Permanent Magnet Synchronous Motor for Railway Transit vol.15, pp.4, 2012, https://doi.org/10.7782/JKSR.2012.15.4.370