• Title/Summary/Keyword: PM Machines

Search Result 112, Processing Time 0.021 seconds

Magnetic Field Distribution Analysis for Core Loss Estimation of Permanent Magnet Machine (영구자석 기기의 철손 예측을 위한 자계 거동 해석)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Choi, Jang-Young;Park, Ji-Hoon;Lee, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.93-95
    • /
    • 2008
  • Nowadays more attention is paid to the developing high efficiency electrical machines for energy saving and protection of natural resources. In general, the electromagnetic losses appearing in electrical machines are widely classified into copper loss, core loss and rotor loss. Particularly, in permanent magnet (PM) machines, core loss forms a larger portion of the total losses than in another machine. So, satisfactory prediction of core loss at the design or analysis stage of PM machines is essential to active high efficiency and high performance. This paper deals with analysis of magnetic field distribution due to geometry of stator core for magnetic core loss calculation of multi-pole PM synchronous machine.

  • PDF

Comparison and Analysis for Open-circuit Field of PM Machines with Halbach and Circumferential Magnetized Rotor (Halbach자화 및 원주방향 자화된 회전자를 갖는 영구자석 기기의 무부하시 자계분포 특성해석 및 비교)

  • Jang, Seok-Myeong;Choi, Jang-Young;Cho, Han-Wook;Yang, Hyun-Sup;Lee, Sung-Ho;Jeong, Sang-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.86-88
    • /
    • 2004
  • This paper deals with the comparison and analysis for open-circuit field of PM(permanent magnet) machines with Halbach and circumferential magnetized rotor. The governing equation is derived in terms of magnetic vector potential and 2-d polar coordinate. And then, analytical results has been verified by comparison with those obtained from FE(finite element) method. On the basis of 2-d analytical results, this paper confirms that PM machines with circumferential magnetized rotor is superior to it with Halbach magnetized rotor in terms of magnitude and sinusoidal wave-forms of flux density due to PM and required magnet volume.

  • PDF

Characteristics of Power Losses in High-Speed Permanent Magnet Synchronous Motor (고속 영구자석 동기 전동기의 손실 특성)

  • Jang, Seok-Myeong;Cho, Han-Wook;Choi, Jang-Young;Ko, Kyeong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.901-902
    • /
    • 2006
  • In high-speed PM machines, rotor losses form a larger proportion of the total losses than usual in conventional low speed machines. In order to maintain the mechanical integrity of a high-speed PM rotor intended for high-speed operation, the rotor assembly is often retained within a sleeve or can. The sleeve is exposed to field produced by the stator from either the slotting or the mmf harmonics that are not synchronous with the rotor. These non-synchronous fields cause the significant rotor losses. An optimum design of high-speed PM machines requires the accurate prediction for these rotor losses. On the basis of analytical field analysis and 2D finite element analysis (FEA), this paper deals with the rotor losses.

  • PDF

Effect of Magnetization Pattern on Partial Demagnetization of Rotary Electric Machines with Ferrite Magnets (페라이트 영구자석을 이용한 회전형 전기기기의 착자 형태에 따른 부분 감자의 영향)

  • Kim, Kwan-Ho;Park, Hyung-Il;You, Dae-Joon;Jang, Seok-Myeong;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1679-1685
    • /
    • 2015
  • This paper examines the effect of the magnetization pattern on the partial demagnetization of a permanent magnet (PM) machine that uses a ferrite magnet. Although the use of halbach-magnetized PM (HMPM) arrays in PM machines has been dramatically increasing because of their attractive features, the demagnetization characteristics of HMPM arrays have not yet been examined. In this study, two analyses of the demagnetization characteristics of HMPM arrays and parallel magnetized PMs (PMPMs) are performed, with the demagnetization characteristics being analyzed using a finite element method. According to our results, partial demagnetization occurred dramatically in the HMPM arrays. Thus, it is important to consider the vulnerability of HMPM arrays when designing PM machines.

Comparison of Slotted and Slotless Ring-wound PM Brushless Machines for Electro-Mechanical Battery (EMB용 전동발전기 선정을 위한 슬롯형과 슬롯리스 Ring-wound형 영구자석 브러시리스 기기의 특성 비교)

  • Jang, Seok-Myeong;Jeong, Sang-Sub;Ryu, Dong-Wan;Choi, Sang-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.3
    • /
    • pp.107-114
    • /
    • 2001
  • Electro-mechanical battery (EMB) consists of a high-speed fly wheel with an integral motor/ generator suspended on magnetic bearings and in an evacuated housing. Permanent magnet (PM) machines as the EMB motor/ generator are a popular choice, since there are no excitation losses which means substantial increase in the efficiency. In this paper we present the comparison of conventional slotted and slotless ring-wound types, aimed at EMB and other high-speed drives. We firstly discuss the topology of each machine for this particular application. these machines are primarily designed as 1kW two-pole PM generator with the rated speed of 40000 rpm. the motoring torque of 0.51 Nm has to be enough to accelerate the flywheel to the rated speed. We then present the comparison of the open-circuit field, the armature reaction field and winding inductance. next we analyze the induced voltage and the developed torque per unit stack length and unit weight of different machines. Finally, we estimate and compare the losses and the efficiency at motoring and generating modes.

  • PDF

Review of Variable-flux Permanent Magnet Machines

  • Owen, R.L.;Zhu, Z.Q.;Wang, J.B.;Stone, D.A.;Urquhart, I.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.23-31
    • /
    • 2012
  • Variable-flux permanent-magnet machines (VFPM) are of great interest and many different machine topologies have been documented. This paper categorizes VFPM machine topologies with regard to the method of flux variation and further, in the case of hybrid excited machines with field coils, with regard to the location of the excitation sources. The different VFPM machines are reviewed and compared in terms of their torque density, complexity and their ability to vary the flux.

Permanent Magnet Eddy Current Analysis of SPM Synchronous Motors according to Magnet Shapes

  • Lee, Sun-Kwon;Kang, Gyu-Hong;Kim, Byoung-Woo;Hur, Jin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.398-402
    • /
    • 2014
  • This paper presents the comparison study of permanent magnet (PM) eddy current of concentrated winding type surface permanent magnet synchronous motor (SPMSM) with different rare-earth magnet shapes. The fractional slot winding having 10 poles and 12 slots is studied. The PM eddy current is analyzed to compare for each shape by 2 dimensional (2D) finite element analysis (FEA). The eddy current and their loss of particular position of PM as well as their distributions are displayed for each model. The effect of partly enlarged air-gap made by PM shape to PM eddy current is compared.

Fast Component Placement with Optimized Long-Stroke Passive Gravity Compensation Integrated in a Cylindrical/Tubular PM Actuator

  • Paulides, J.J.H.;Encica, L.;Meessen, K.J.;Lomonova, E.A.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.275-282
    • /
    • 2013
  • Applications such as vibration isolation, gravity compensation, pick-and-place machines, etc., would benefit from (long-stroke) cylindrical/tubular permanent magnet (PM) actuators with integrated passive gravity compensation to minimize the power consumption. As an example, in component placing (pick-and-place) machines on printed circuit boards, passive devices allow the powerless counteraction of translator including nozzles or tooling bits. In these applications, an increasing demand is arising for high-speed actuation with high precision and bandwidth capability mainly due to the placement head being at the foundation of the motion chain, hence, a large mass of this device will result in high force/power requirements for the driving mechanism (i.e. an H-bridge with three linear permanent magnet motors placed in an H-configuration). This paper investigates a tubular actuator topology combined with passive gravity compensation. These two functionalities are separately introduced, where the combination is verified using comprehensive three dimensional (3D) finite element analyses.

Design and Dynamic Aanlaysis of Surface-Mounted Type Variable Flux Machines (표면부착형 가변 자속 전동기의 설계 및 동특성 해석)

  • Kim, Jeong-Man;Choi, Jang-Young;Lee, Kyu-Seok;Lee, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.740-741
    • /
    • 2015
  • This paper presents the design and dynamic analysis of surface-mounted type variable flux permanent magnet(VFPM) machines. VFPM machines with a low-coercive-force (LCF) magnetic material have been studied extensively for their potential to improve the efficiency and extend the flux-weakening range of permaennt magnet (PM) machines. In order to implement the design of the VFPM machines effectively, we perform a characteristic analysis of the LCF magnet with respect to design parameters. The analysis results of the designed VFPM machines are compared with measured results, and the validity of the design of the VFPM machines is confirmed.

  • PDF

The Generating Characteristic Analysis of Permanent Magnet Machines with Multi-Pole Rotor Considering Losses (손실을 고려한 영구자석형 다극 기기의 발전특성해석)

  • Jang, Seok-Myeong;Choi, Jang-Young;Ko, Kyoung-Jin;Lee, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.47-49
    • /
    • 2007
  • This paper deals with the generating characteristic analysis of permanent magnet (PM) machines with multi-pole rotor and 3-phase stator windings considering losses such as copper loss, iron loss and mechanical loss. First, using d-q transformation, dynamic equations of PM machines are established. And then, characteristic equations for losses, power and efficiency are also derived. On the basis of d-q dynamic equations and characteristic equations, dynamic simulation algorithm is achieved by the MATLAB/SIMULINK. The simulation results are validated extensively by finite element (FE) analyses.

  • PDF