• Title/Summary/Keyword: PM(Particulate matter)

Search Result 824, Processing Time 0.025 seconds

Indoor and Outdoor Particulate Matter: The Current and Future in Monitoring, Assessment, and Management (실내 외 미세먼지 측정 및 관리 기술 동향)

  • Kim, Jae-Jin;Choi, Wonsik;Kim, Jinsoo;Noh, Youngmin;Son, Youn-Suk;Yang, Minjune
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1635-1641
    • /
    • 2020
  • Air pollution is one of the most severe threats to society globally due to the rapid expansion of urbanization and industrialization. Particularly, particulate matter (PM) pollution was recently designated as a social disaster by the Korean government because of increases in public concerns and the accumulation of scientific evidence that links high levels of PM2.5 (PM smaller than 2.5 ㎛ in diameter) to a long list of adverse health effects. Atmospheric PM concentrations can also affect the indoor PM levels to which people are exposed most of the time. Thus, understanding the characteristics of indoor and ambient PM pollution based on measurements, model simulations, risk assessments, and management technologies is inevitable in establishing effective policies to mitigate social, economic, and health costs incurred by PM pollution. In this special issue, we introduce several interesting studies concerning indoor and outdoor PM from the perspective of monitoring, assessment, and management being conducted by i-SEED (School of Integrated Science for Sustainable Earth & Environmental Disaster at Pukyong National University) and SPMC (School Particulate Matter Center for Energy and Environmental Harmonization). We expect that this special issue can improve our understanding of the current and future of indoor and outdoor PM pollution, integrating the results from interdisciplinary research groups from various academic fields.

Optimization of DNA Extraction and PCR Conditions for Fungal Metagenome Analysis of Atmospheric Particulate Matter (대기 입자상물질 시료의 곰팡이 메타게놈 분석을 위한 DNA 추출 및 PCR 조건 최적화)

  • Sookyung Kang;Kyung-Suk Cho
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.99-108
    • /
    • 2023
  • Several challenges arise in DNA extraction and gene amplification for airborne fungal metagenome analysis from a particulate matter (PM) samples. In this study, various conditions were tested to optimize the DNA extraction method from PM samples and polymerase chain reaction (PCR) conditions with primer set and annealing temperature. As a result of comparative evaluation of DNA extraction under various conditions, chemical cell lysis using buffer and proteinase K for 20 minutes and bead beating treatment were followed by using a commercial DNA extraction kit to efficiently extract DNA from the PM filter samples. To optimize the PCR conditions, PCR was performed using 10 primer sets for amplifying the ITS2 gene region. The concentration of the PCR amplicon was relatively high when the annealing temperature was 58℃ with the ITS3tagmix3/ITS4 primer set. Even under these conditions, when the concentration of the PCR product was low, nested PCR was performed using the primary PCR amplicon as the template DNA to amplify the ITS2 gene at a satisfactory concentration. Using the methods optimized in this study, DNA extraction and PCR were performed on 15 filter samples that collected PM2.5 in Seoul, and the ITS2 gene was successfully amplified in all samples. The optimized methods can be used for research on analyzing and interpreting the fungal metagenome of atmospheric PM samples.

Characteristics of Size Distribution and Fugitive Emissions of Particulate Matter in Foundries (주물사업장의 입자상물질 입경분포 및 비산배출 특성)

  • Park, Jeong-Ho;Jang, Min-Jae;Kim, Hyoung-Kab
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.1
    • /
    • pp.30-37
    • /
    • 2016
  • Objectives: This study was performed to measure and evaluate the concentration, size distribution and fugitive emission of particulate matter from process operations at foundries. Methods: Particle matter was collected from three foundries, and samples were also collected from a background site for calculating the fugitive emission concentration of the foundries. For the collection of the samples, a Nanosampler cascade impactor was used. Results: The concentration of TSP in the samples collected from the three foundries was $0.675{\sim}1.222mg/m^3$, $PM_{10}$ was $0.525{\sim}1.018mg/m^3$ and $PM_{2.5}$ was $0.192{\sim}0.615mg/m^3$. The mass size distribution was bimodal or monomodal with maximum peak at two stage(size $2.5{\sim}10{\mu}m$). The mass median aerodynamic diameter(MMAD) was $1.80{\sim}3.98{\mu}m$. The fugitive emission concentration of TSP varies in the range of 0.65 to $1.21mg/m^3$, which exceeds the emission standard of fugitive dust($0.5mg/m^3$). Conclusions: Particle concentration and size is an important industrial hygiene factor to protect foundry workers. Furthermore, the presence of high emission of particulate pollutants has a significant negative impact on the ambient air of the study area. Therefore, it is important to improve both the process and prevention facility in oder to reduce particulate pollutants in foundries.

Multielement Analysis in Airborne Particulate Matter $(PM_{10})$ by INAA, ICP and AAS (INAA.ICP.AAS를 이용한 대기먼지 $(PM_{10})$의 다원소분석)

  • 정용삼;문종화;정영주;박광원;이길용;윤윤열;심상권;조경행;한명섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.495-503
    • /
    • 1999
  • Airborne particulate matter $(PM_{10})$ collected using high volume air sampler and silica fiber filter were analyzed by Instrumental Neutron Activation Analysis(INAA), Inductively Coupled Plasma Atomic Emission Spectrometry(ICP-AES) and Atomic Absorption Spectrometry(AAS), and the results were compared with each other. 30~40 trace elements in environmental standard reference materials(NIST SRM 1648 and NIES CRM No.8) were analyzed for the analytical quality control. The relative error for two-third of elements detected was less than 10%, and the standard deviation was less than 15%. During the sampling period for 24 hours, the mass concentration of total suspended particulate was 36.1$\mu\textrm{g}$/㎥ and the value is lower than the critical level in Korea. In the results of NAA, the elements of Al, As, Ba, Fe, La, Mg, Na, Sb, Zn were well agreed with those of other methods. In statistical estimation between different methods, the deviation of Al, Ba, Cr, Fe was less than 10% and quite reliable.

  • PDF

Measurement and Interpretation of Time Variations of Particulate Matter Observed in the Busan Coastal Area in Korea

  • Kim, Cheol-Hee;Son, Hye-Young
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.105-112
    • /
    • 2011
  • In order to investigate the effects of local and synoptic meteorological conditions on urban scale particulate air pollutants observed over the Busan coastal area, power spectrum analysis was applied to observed particulate matter with an aerodynamic diameter $\leq10\;{\mu}m$ ($PM_{10}$) for the period from 1 October, 1993 to 31 December, 2004. Fast Fourier Transform (FFT) analysis was used to obtain the hourly mean observed $PM_{10}$ concentrations to identify different periodicity scales of $PM_{10}$ concentrations. The results showed that, aside from the typical and well-known periodicities such as diurnal and annual variations caused by anthropogenic influences, three other significant power spectral density peaks were identified: 7-day, 21-day and 2.25-year periodicities. Cospectrum analysis indicated that the seven-day variations were closely related to the synoptic meteorological conditions such as weak wind speed, which are relevant to the stagnant high pressure system slowly passing through the Korean Peninsula. The intra-seasonal 21-day variation was negatively correlated with wind speed but was consistently positively correlated with relative humidity, which is related to aerosol formation that can be achieved as a result of the hygroscopic characteristics of aerosols. However, the quasibiennial 2.25-year variation was correlated with the frequency of Asian dust occurrence, the periodicities of which have been recorded inter-annually over the Korean Peninsula.

Chemical Mass Composition of Ambient Aerosol over Jeju City (제주시 지역 미세먼지의 변동과 화학적 구성 특성)

  • Lee, Ki-Ho;Kim, Su-Mi;Kim, Kil-Seong;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.29 no.5
    • /
    • pp.495-506
    • /
    • 2020
  • This study investigated the nitrate formation process, and mass closure of Particulate Matter (PM) were calculated over the urbanized area of Jeju Island. The data for eight water-soluble inorganic ions and nineteen elements in PM2.5 and PM10 were used. The results show that the nitrate concentration increased as excess ammonium increased in ammonium-rich samples. Furthermore, nitrate formation was not as important in ammonium-poor samples as it was in previous studies. According to the sum of the measured species, approximately 45~53% of gravimetric mass of PM remained unidentified. To calculate the mass closure for both PM2.5 and PM10, PM chemical components were categorized into secondary inorganic aerosol, crustal matter, sea salt, trace matter and unidentified matter. The results by the mass reconstruction of PM components show that the portion of unidentified matter was decreased from 52.7% to 44.0% in PM2.5 and from 45.1% to 29.1% in PM10, despite the exclusion of organic matter and elemental carbon.

An Electrostatic Diesel Particulate Filtration System for Removal of Fine Particulate Matters from Marine Diesel Engines (선박 디젤엔진 배출 미세먼지 저감을 위한 정전 여과 매연 집진기 개발에 관한 연구)

  • Younghun Kim;Gunhee Lee;Kee-Jung Hong;Yong-Jin Kim;Hak-Jun Kim;Inyong Park;Bangwoo Han
    • Particle and aerosol research
    • /
    • v.19 no.4
    • /
    • pp.101-110
    • /
    • 2023
  • In order to reduce particulate matters (PM) from marine diesel engines, we developed novel electrostatic diesel particulate matter filtration system. Electrostatic diesel particulate filtration (DPF) system consists of electrostatic charger and filtration part. The electrostatic charger and filtration part are composed of a metal discharge electrode and a metal fiber filter (porosity: 68.1-86.1%), respectively. In the electrostatic charger part, diesel soot particles are reduced by electrostatic force. The filtration part after electrostatic charger part reduces diesel soot particles through inertial and diffusion forces. The filtration efficiency of electrostatic DPF system was examined through the experiments using engine dynamometer system (300 kW) and ship (200 kW). The PM reduction efficiencies due to inertial and electrostatic forces showed about 70-75% and 80-90%, respectively, according to the RPM of the engine. The differential pressure of the electrostatic DPF system applied to the ship was about 1-9 mbar, which was less than the allowable differential pressure for ship engines in South Korea (100 mbar). The results show that the electrostatic DPF system is suitable for application to the PM reduction emitted from ships.

The Effect of Particulate Matter 10 from Asian Dust on the Production of Reactive Oxygen Species, TGF-β, NF-κB, PDGF-α and Fibronectin in MRC-5 Fibroblast Cells (폐 섬유모세포에서 황사의 미세먼지(Particulate Matter 10)가 활성산소족과 TGF-β, NF-κB, PDGF-α, Fibronectin의 생성에 미치는 영향)

  • Kim, Ah Hyun;Chon, Suyeon;Yoon, Jin Young;Kim, Yu Jin;Kyung, Sun Young;Lee, Sang Pyo;Park, Jeong Woong;Jeong, Sung Hwan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.67 no.6
    • /
    • pp.528-535
    • /
    • 2009
  • Background: Dust clouds blown by the wind from the arid deserts of Mongolia and Northeast China are known as Asian dust storms. Ambient particulate matter with a diameter <10 ${\mu}m$ ($PM_{10}$) is associated with the exacerbation of respiratory diseases and increased mortality of heart and lung disease patients. The fibrotic effects of $PM_{10}$ of Asian dust to pulmonary fibroblast cells are unknown. This study examined the production of reactive oxygen species (ROS), TGF-${\beta}$, NF-${\kappa}B$, PDGF-$\alpha$ and Fibronectin in fibroblasts exposed to Asian dust particles. Methods: Air samples were collected using a high volume air sampler (Sibata model HV500F) with an air flow of 500 L/min for at least 6 hours. The MRC-5 cells were exposed to 0, 50 and 100 ${\mu}g/mL$ of $PM_{10}$ for 24 hours. ROS was detected by measuring the level of oxidized DCF using FACS. TGF-$\beta$, NF-${\kappa}B$, PDGF-$\alpha$ and fibronectin were detected by western blotting. Results: There was no increase in the ROS, TGF-$\beta$ and PDGF-$\alpha$ levels in the MRC-5 cells exposed to $PM_{10}$. The NF-${\kappa}B$ level was higher in the MRC-5 cells exposed to 50 and 100 ${\mu}g/mL$ of $PM_{10}$ for 24 hours. The fibronectin level in the MRC-5 cells after 24 hours incubation with 50 ${\mu}g/mL$ $PM_{10}$ was significantly higher than the control group ($PM_{10}$ 50 ${\mu}g/mL$ 113.27${\pm}$8.65 of control, p=0.005). Conclusion: $PM_{10}$ from Asian dust increases the activation of NF-${\kappa}B$ and fibronectin expression in MRC-5 fibroblast cells.

Comparison of Particulate Matters in a Compression Ignition Engine under Mid-load Condition Fuelled with Diesel and Biodiesel fuel (압축 착화 엔진의 중부하 운전 영역에서 디젤 및 폐식용유 바이오디젤 연소 시 발생하는 입자상 물질에 관한 특성 비교)

  • Hwang, Joonsik;Jung, Yongjin;Qi, Donghui;Bae, Choongsik
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.29-31
    • /
    • 2013
  • In this study, the characteristics of particulate matters (PM) from diesel and biodiesel fuel combustion was experimentally investigated. The experiment was performed in a single cylinder common-rail compression ignition engine. The fuels were injected at -5 CAD (Crank angle degree) ATDC (After top dead center) with 80 MPa injection pressure. Size distribution of PM was measured by scanning mobility particle sizer (SMPS) and morphology of PM was studied by transmission electron microscopy (TEM). PM from biodiesel shows lower emission level and smaller primary particles.

  • PDF

Exploration into effect of perception on health behavior regarding particulate matter(PM) among Korean collegians: Centered on attribution styles, involvement, perceived health status, and preventive intention (우리나라 대학생의 미세먼지 관련 지각이 건강행동에 미치는 영향에 대한 탐색: 귀인양식, 관여도, 건강상태지각 및 예방행동의도를 중심으로)

  • Joo, Ji Hhyuk
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.269-276
    • /
    • 2018
  • As the particulate matter (PM) is fatal for human being, the government authorities try to lessen PM with a variety of policy instruments. To increase the efficiency of the policy, we need to understand people's perception and risk avoidance on PM. Thus, the research explored what attribution styles, involvement, and perceived health status have an influence on preventive intention. First, we found three attribution styles on PM occurrence through factor analysis: daily life(DL), domestic industry & environment(DI&E), and Chinese industry & environment(CI&E). We also found that involvement(${\beta}=.465$, p<.001), CI&E(${\beta}=.222$, p<.001), DL(${\beta}=.173$, p<.01), and DI&E(${\beta}=.143$, p<.05) have an influence on preventive intention in order. Finally we discussed suggestions for future study.