DOI QR코드

DOI QR Code

Optimization of DNA Extraction and PCR Conditions for Fungal Metagenome Analysis of Atmospheric Particulate Matter

대기 입자상물질 시료의 곰팡이 메타게놈 분석을 위한 DNA 추출 및 PCR 조건 최적화

  • Sookyung Kang (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kyung-Suk Cho (Department of Environmental Science and Engineering, Ewha Womans University)
  • 강수경 (이화여자대학교 환경공학과) ;
  • 조경숙 (이화여자대학교 환경공학과)
  • Received : 2022.12.28
  • Accepted : 2023.01.31
  • Published : 2023.03.28

Abstract

Several challenges arise in DNA extraction and gene amplification for airborne fungal metagenome analysis from a particulate matter (PM) samples. In this study, various conditions were tested to optimize the DNA extraction method from PM samples and polymerase chain reaction (PCR) conditions with primer set and annealing temperature. As a result of comparative evaluation of DNA extraction under various conditions, chemical cell lysis using buffer and proteinase K for 20 minutes and bead beating treatment were followed by using a commercial DNA extraction kit to efficiently extract DNA from the PM filter samples. To optimize the PCR conditions, PCR was performed using 10 primer sets for amplifying the ITS2 gene region. The concentration of the PCR amplicon was relatively high when the annealing temperature was 58℃ with the ITS3tagmix3/ITS4 primer set. Even under these conditions, when the concentration of the PCR product was low, nested PCR was performed using the primary PCR amplicon as the template DNA to amplify the ITS2 gene at a satisfactory concentration. Using the methods optimized in this study, DNA extraction and PCR were performed on 15 filter samples that collected PM2.5 in Seoul, and the ITS2 gene was successfully amplified in all samples. The optimized methods can be used for research on analyzing and interpreting the fungal metagenome of atmospheric PM samples.

대기 입자상물질(particulate matter, PM) 시료의 곰팡이 메타게놈 분석을 위해 DNA 추출 및 유전자 증폭 시 여러 문제가 발생한다. 본 연구에서는 PM 시료로부터 DNA를 추출하는 방법과 polymerase chain reaction (PCR)을 위한 프라이머 및 온도 조건의 최적화를 위하여 다양한 조건으로 실험하였다. 여러 조건에서 DNA 추출 여부를 비교 평가한 결과, bufffer와 proteinase K를 이용하여 20분 동안 화학적 세포 용해 처리와 bead beating 처리를 한 후 상용 DNA 추출 kit를 사용하면 DNA를 효율적으로 추출할 수 있었다. PCR 조건을 최적화하기 위해 ITS2 유전자 영역을 증폭할 수 있는 10개 조합의 프라이머를 이용하여 PCR을 수행한 결과, ITS3tagmix3/ITS4 조합의 프라이머로 annealing 온도 58℃로 하였을 때 증폭된 PCR 산물의 농도가 상대적으로 높았다. 이 조건에서도 PCR 산물의 농도가 낮은 경우에는 1차 PCR 산물을 주형 DNA로 사용하여 nested PCR을 수행하면 만족스러운 농도로 ITS2 유전자를 증폭할 수 있었다. 본 연구에서 도출한 조건으로 서울 대기 PM2.5를 포집한 필터 시료 15종을 대상으로 DNA 추출과 PCR을 수행한 결과 성공적으로 ITS2 유전자 증폭이 가능하였다. 본 연구에서 최적화한 방법은 대기 PM 시료의 곰팡이 메타게놈을 분석하고 해석하는 연구에 활용 가능하다.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF- 2022R1A2C2006615).

References

  1. Pan Y, Pan X, Xiao H, Xiao H. 2019. Structural characteristics and functional implications of PM2.5 bacterial communities during fall in Beijing and Shanghai, China. Front. Microbiol. 10: 2369.
  2. Fan XY, Gao JF, Pan KL, Li DC, Dai HH, Li X. 2019. More obvious air pollution impacts on variations in bacteria than fungi and their co-occurrences with ammonia-oxidizing microorganisms in PM2.5. Environ. Pollut. 251: 668-680. https://doi.org/10.1016/j.envpol.2019.05.004
  3. Du P, Du R, Ren W, Lu Z, Fu P. 2018. Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city, China. Sci. Total Environ. 610: 308-315. https://doi.org/10.1016/j.scitotenv.2017.07.097
  4. Jiang S, Sun B, Zhu R, Che C, Ma D, Wang R, et al. 2022. Airborne microbial community structure and potential pathogen identification across the PM size fractions and seasons in the urban atmosphere. Sci. Total Environ. 831: 154665.
  5. Oh S-Y, Fong JJ, Park MS, Chang L, Lim YW. 2014. Identifying airborne fungi in Seoul, Korea using metagenomics. J. Microbiol. 52: 465-472. https://doi.org/10.1007/s12275-014-3550-1
  6. Zukiewicz-Sobczak WA. 2013. The role of fungi in allergic diseases. Postepy Dermatol. Alergol. 30: 42-45. https://doi.org/10.5114/pdia.2013.33377
  7. Jiang W, Liang P, Wang B, Fang J, Lang J, Tian G, et al. 2015. Optimized DNA extraction and metagenomic sequencing of airborne microbial communities. Nat. Protoc. 10: 768-779. https://doi.org/10.1038/nprot.2015.046
  8. Kang S, Cho K-S. 2022. Microbial metagenome of airborne particulate matter: Methodology, characteristics, and influencing parameters. Microbiol. Biotechnol. Lett. 50: 165-192. https://doi.org/10.48022/mbl.2112.12005
  9. Williams RH, Ward E, McCartney HA. 2001. Methods for integrated air sampling and DNA analysis for detection of airborne fungal spores. Appl. Environ. Microbiol. 67: 2453-2459. https://doi.org/10.1128/AEM.67.6.2453-2459.2001
  10. Luhung I, Wu Y, Ng CK, Miller D, Cao B, Chang VWC. 2015. Protocol improvements for low concentration DNA-based bioaerosol sampling and analysis. PLoS One 10: e0141158.
  11. Burgmann H, Pesaro M, Widmer F, Zeyer J. 2001. A strategy for optimizing quality and quantity of DNA extracted from soil. J. Microbiol. Methods 45: 7-20. https://doi.org/10.1016/S0167-7012(01)00213-5
  12. Johnson MD, Cox RD, Barnes MA. 2019. Analyzing airborne environmental DNA: A comparison of extraction methods, primer type, and trap type on the ability to detect airborne eDNA from terrestrial plant communities. Environ. DNA 1: 176- 185. https://doi.org/10.1002/edn3.19
  13. Fredricks DN, Smith C, Meier A. 2005. Comparison of six DNA extraction methods for recovery of fungal DNA as assessed by quantitative PCR. J. Clin. Microbiol. 43: 5122-5128. https://doi.org/10.1128/JCM.43.10.5122-5128.2005
  14. Karakousis A, Tan L, Ellis D, Alexiou H, Wormald PJ. 2006. An assessment of the efficiency of fungal DNA extraction methods for maximizing the detection of medically important fungi using PCR. J. Microbiol. Methods 65: 38-48. https://doi.org/10.1016/j.mimet.2005.06.008
  15. Liu H, Hu Z, Zhou M, Zhang H, Zhang X, Yue Y, et al. 2022. PM2.5 drives bacterial functions for carbon, nitrogen, and sulfur cycles in the atmosphere. Environ. Pollut. 295: 118715.
  16. Zhou Q, Fu K, Hu X, Li X, Lai Z, Yuan P. 2022. Relationships between airborne microbial community diversity, heating supply patterns and particulate matter properties. J. Environ. Chem. Eng. 10: 107309.
  17. Zhong S, Zhang L, Jiang X, Gao P. 2019. Comparison of chemical composition and airborne bacterial community structure in PM2.5 during haze and non-haze days in the winter in Guilin, China. Sci. Total Environ. 655: 202-210. https://doi.org/10.1016/j.scitotenv.2018.11.268
  18. Rocchi S, Reboux G, Scherer E, Laboissiere A, Zaros C, Rouzet A, et al. 2020. Indoor Microbiome: Quantification of exposure and association with geographical location, meteorological factors, and land use in France. Microorganisms 8: 341.
  19. Muller-Germann I, Vogel B, Vogel H, Pauling A, FrohlichNowoisky J, Poschl U, et al. 2015. Quantitative DNA analyses for airborne birch pollen. PLoS One 10: e0140949.
  20. Lee Y-Y, Seo Y, Ha M, Lee J, Yang H, Cho K-S. 2021. Evaluation of rhizoremediation and methane emission in diesel-contaminated soil cultivated with tall fescue (Festuca arundinacea). Environ. Res. 194: 110606.
  21. Roose-Amsaleg CL, Garnier-Sillam E, Harry M. 2001. Extraction and purification of microbial DNA from soil and sediment samples. Appl. Soil Ecol. 18: 47-60. https://doi.org/10.1016/S0929-1393(01)00149-4
  22. Henderson TJ, Salem H. 2016. The atmosphere: Its developmental history and contributions to microbial evolution and habitat, pp. 1-41. In Salem H, Katz S (eds.), Aerobiology: The Toxicology of Airborne Pathogens and Toxins, Toxicology Ed. Royal Society of Chemistry, London.
  23. Carlile MJ, Watkinson SC, Gooday GW. 2001. THE FUNGI, pp. 185-240. 2nd Ed. Gulf Professional Publishing, Oxford.
  24. Borah P. 2011. Primer designing for PCR. Sci. Vis. 11: 134-136.
  25. Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H. 2010. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol. 10: 189.
  26. Lorenz TC. 2012. Polymerase chain reaction: Basic protocol plus troubleshooting and optimization strategies. J. Vis. Exp. 63: e3998.
  27. De Beeck M, Lievens B, Busschaert P, Declerck S, Vangronsveld J. 2014. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS One 9: 97629.
  28. Toju H, Tanabe AS, Yamamoto S, Sato H. 2012. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One 7: e40863.
  29. Guo Y, Zhang H, Chen W, Zhang Y. 2018. Herbivore-diet analysis based on illumina MiSeq sequencing: The potential use of an ITS2-barcoding approach to establish qualitative and quantitative predictions of diet composition of mongolian sheep. J. Agric. Food Chem. 66: 9858-9867. https://doi.org/10.1021/acs.jafc.8b02814
  30. Tedersoo L, Anslan S, Bahram M, Polme S, Riit T, Liiv I, et al. 2015. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10: 1-43. https://doi.org/10.3897/mycokeys.10.4852
  31. Green MR, Sambrook J. 2019. Nested Polymerase Chain Reaction (PCR). Cold Spring Harb Protoc. pdb-prot095182.
  32. Snounou G, Singh B. 2002. Nested PCR Analysis of Plasmodium Parasites, pp. 189-203. In Doolan, DL (eds.), Malaria Methods and Protocols. Methods in Molecular MedicineTM, vol 72. Humana Press, New Jersey.
  33. Lam WY, Yeung ACM, Tang JW, Ip M, Chan EWC, Hui M, Chan PK.S. 2007. Rapid multiplex nested PCR for detection of respiratory viruses. J. Clin. Microbiol. 45: 3631-3640. https://doi.org/10.1128/JCM.00280-07
  34. Gaudio PA, Gopinathan U, Sangwan V. 2002. Polymerase chain reaction based detection of fungi in infected corneas. Br. J. Ophthalmol. 86: 755-760. https://doi.org/10.1136/bjo.86.7.755
  35. Badiee P, Abdolvahab A, Nejabat M, Alborzi A, Keshavarz F, Shakiba E. 2010. Comparative study of Gram stain, potassium hydroxide smear, culture and nested PCR in the diagnosis of fungal Keratitis. Ophthalmic Res. 44: 251-256. https://doi.org/10.1159/000313988
  36. Wei M, Xu C, Xu X, Zhu C, Li J, Lv G. 2019. Characteristics of atmospheric bacterial and fungal communities in PM2.5 following biomass burning disturbance in a rural area of North China Plain. Sci. Total Environ. 651: 2727-2739. https://doi.org/10.1016/j.scitotenv.2018.09.399
  37. Qi Y, Li Y, Xie W, Lu R, Mu F, Bai W, Du S. 2020. Temporal-spatial variations of fungal composition in PM2.5 and source tracking of airborne fungi in mountainous and urban regions. Sci. Total Environ. 708: 135027.
  38. Jiang H, Yang J, Zhang D, Li B, Wang E, Yuan H. 2013. Concentration and community of airborne bacteria in response to cyclical haze events during the fall and midwinter in Beijing, China. China. Front. Microbiol. 9: 1741.
  39. Lilja T, Eklof D, Jaenson TGT, Lindstrom A, Terenius O. 2020. Single nucleotide polymorphism analysis of the ITS2 region of two sympatric malaria mosquito species in Sweden: Anopheles daciae and Anopheles messeae. Med. Vet. Entomol. 34: 364-368. https://doi.org/10.1111/mve.12436
  40. Wang X-C, Liu C, Huang L, Bengtsson-Palme J, Chen H, Zhang J-H, et al. 2015. ITS1: a DNA barcode better than ITS2 in eukaryotes? Mol. Ecol. Resour. 15: 573-586. https://doi.org/10.1111/1755-0998.12325