Acknowledgement
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF- 2022R1A2C2006615).
References
- Pan Y, Pan X, Xiao H, Xiao H. 2019. Structural characteristics and functional implications of PM2.5 bacterial communities during fall in Beijing and Shanghai, China. Front. Microbiol. 10: 2369.
- Fan XY, Gao JF, Pan KL, Li DC, Dai HH, Li X. 2019. More obvious air pollution impacts on variations in bacteria than fungi and their co-occurrences with ammonia-oxidizing microorganisms in PM2.5. Environ. Pollut. 251: 668-680. https://doi.org/10.1016/j.envpol.2019.05.004
- Du P, Du R, Ren W, Lu Z, Fu P. 2018. Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city, China. Sci. Total Environ. 610: 308-315. https://doi.org/10.1016/j.scitotenv.2017.07.097
- Jiang S, Sun B, Zhu R, Che C, Ma D, Wang R, et al. 2022. Airborne microbial community structure and potential pathogen identification across the PM size fractions and seasons in the urban atmosphere. Sci. Total Environ. 831: 154665.
- Oh S-Y, Fong JJ, Park MS, Chang L, Lim YW. 2014. Identifying airborne fungi in Seoul, Korea using metagenomics. J. Microbiol. 52: 465-472. https://doi.org/10.1007/s12275-014-3550-1
- Zukiewicz-Sobczak WA. 2013. The role of fungi in allergic diseases. Postepy Dermatol. Alergol. 30: 42-45. https://doi.org/10.5114/pdia.2013.33377
- Jiang W, Liang P, Wang B, Fang J, Lang J, Tian G, et al. 2015. Optimized DNA extraction and metagenomic sequencing of airborne microbial communities. Nat. Protoc. 10: 768-779. https://doi.org/10.1038/nprot.2015.046
- Kang S, Cho K-S. 2022. Microbial metagenome of airborne particulate matter: Methodology, characteristics, and influencing parameters. Microbiol. Biotechnol. Lett. 50: 165-192. https://doi.org/10.48022/mbl.2112.12005
- Williams RH, Ward E, McCartney HA. 2001. Methods for integrated air sampling and DNA analysis for detection of airborne fungal spores. Appl. Environ. Microbiol. 67: 2453-2459. https://doi.org/10.1128/AEM.67.6.2453-2459.2001
- Luhung I, Wu Y, Ng CK, Miller D, Cao B, Chang VWC. 2015. Protocol improvements for low concentration DNA-based bioaerosol sampling and analysis. PLoS One 10: e0141158.
- Burgmann H, Pesaro M, Widmer F, Zeyer J. 2001. A strategy for optimizing quality and quantity of DNA extracted from soil. J. Microbiol. Methods 45: 7-20. https://doi.org/10.1016/S0167-7012(01)00213-5
- Johnson MD, Cox RD, Barnes MA. 2019. Analyzing airborne environmental DNA: A comparison of extraction methods, primer type, and trap type on the ability to detect airborne eDNA from terrestrial plant communities. Environ. DNA 1: 176- 185. https://doi.org/10.1002/edn3.19
- Fredricks DN, Smith C, Meier A. 2005. Comparison of six DNA extraction methods for recovery of fungal DNA as assessed by quantitative PCR. J. Clin. Microbiol. 43: 5122-5128. https://doi.org/10.1128/JCM.43.10.5122-5128.2005
- Karakousis A, Tan L, Ellis D, Alexiou H, Wormald PJ. 2006. An assessment of the efficiency of fungal DNA extraction methods for maximizing the detection of medically important fungi using PCR. J. Microbiol. Methods 65: 38-48. https://doi.org/10.1016/j.mimet.2005.06.008
- Liu H, Hu Z, Zhou M, Zhang H, Zhang X, Yue Y, et al. 2022. PM2.5 drives bacterial functions for carbon, nitrogen, and sulfur cycles in the atmosphere. Environ. Pollut. 295: 118715.
- Zhou Q, Fu K, Hu X, Li X, Lai Z, Yuan P. 2022. Relationships between airborne microbial community diversity, heating supply patterns and particulate matter properties. J. Environ. Chem. Eng. 10: 107309.
- Zhong S, Zhang L, Jiang X, Gao P. 2019. Comparison of chemical composition and airborne bacterial community structure in PM2.5 during haze and non-haze days in the winter in Guilin, China. Sci. Total Environ. 655: 202-210. https://doi.org/10.1016/j.scitotenv.2018.11.268
- Rocchi S, Reboux G, Scherer E, Laboissiere A, Zaros C, Rouzet A, et al. 2020. Indoor Microbiome: Quantification of exposure and association with geographical location, meteorological factors, and land use in France. Microorganisms 8: 341.
- Muller-Germann I, Vogel B, Vogel H, Pauling A, FrohlichNowoisky J, Poschl U, et al. 2015. Quantitative DNA analyses for airborne birch pollen. PLoS One 10: e0140949.
- Lee Y-Y, Seo Y, Ha M, Lee J, Yang H, Cho K-S. 2021. Evaluation of rhizoremediation and methane emission in diesel-contaminated soil cultivated with tall fescue (Festuca arundinacea). Environ. Res. 194: 110606.
- Roose-Amsaleg CL, Garnier-Sillam E, Harry M. 2001. Extraction and purification of microbial DNA from soil and sediment samples. Appl. Soil Ecol. 18: 47-60. https://doi.org/10.1016/S0929-1393(01)00149-4
- Henderson TJ, Salem H. 2016. The atmosphere: Its developmental history and contributions to microbial evolution and habitat, pp. 1-41. In Salem H, Katz S (eds.), Aerobiology: The Toxicology of Airborne Pathogens and Toxins, Toxicology Ed. Royal Society of Chemistry, London.
- Carlile MJ, Watkinson SC, Gooday GW. 2001. THE FUNGI, pp. 185-240. 2nd Ed. Gulf Professional Publishing, Oxford.
- Borah P. 2011. Primer designing for PCR. Sci. Vis. 11: 134-136.
- Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H. 2010. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol. 10: 189.
- Lorenz TC. 2012. Polymerase chain reaction: Basic protocol plus troubleshooting and optimization strategies. J. Vis. Exp. 63: e3998.
- De Beeck M, Lievens B, Busschaert P, Declerck S, Vangronsveld J. 2014. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS One 9: 97629.
- Toju H, Tanabe AS, Yamamoto S, Sato H. 2012. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One 7: e40863.
- Guo Y, Zhang H, Chen W, Zhang Y. 2018. Herbivore-diet analysis based on illumina MiSeq sequencing: The potential use of an ITS2-barcoding approach to establish qualitative and quantitative predictions of diet composition of mongolian sheep. J. Agric. Food Chem. 66: 9858-9867. https://doi.org/10.1021/acs.jafc.8b02814
- Tedersoo L, Anslan S, Bahram M, Polme S, Riit T, Liiv I, et al. 2015. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10: 1-43. https://doi.org/10.3897/mycokeys.10.4852
- Green MR, Sambrook J. 2019. Nested Polymerase Chain Reaction (PCR). Cold Spring Harb Protoc. pdb-prot095182.
- Snounou G, Singh B. 2002. Nested PCR Analysis of Plasmodium Parasites, pp. 189-203. In Doolan, DL (eds.), Malaria Methods and Protocols. Methods in Molecular MedicineTM, vol 72. Humana Press, New Jersey.
- Lam WY, Yeung ACM, Tang JW, Ip M, Chan EWC, Hui M, Chan PK.S. 2007. Rapid multiplex nested PCR for detection of respiratory viruses. J. Clin. Microbiol. 45: 3631-3640. https://doi.org/10.1128/JCM.00280-07
- Gaudio PA, Gopinathan U, Sangwan V. 2002. Polymerase chain reaction based detection of fungi in infected corneas. Br. J. Ophthalmol. 86: 755-760. https://doi.org/10.1136/bjo.86.7.755
- Badiee P, Abdolvahab A, Nejabat M, Alborzi A, Keshavarz F, Shakiba E. 2010. Comparative study of Gram stain, potassium hydroxide smear, culture and nested PCR in the diagnosis of fungal Keratitis. Ophthalmic Res. 44: 251-256. https://doi.org/10.1159/000313988
- Wei M, Xu C, Xu X, Zhu C, Li J, Lv G. 2019. Characteristics of atmospheric bacterial and fungal communities in PM2.5 following biomass burning disturbance in a rural area of North China Plain. Sci. Total Environ. 651: 2727-2739. https://doi.org/10.1016/j.scitotenv.2018.09.399
- Qi Y, Li Y, Xie W, Lu R, Mu F, Bai W, Du S. 2020. Temporal-spatial variations of fungal composition in PM2.5 and source tracking of airborne fungi in mountainous and urban regions. Sci. Total Environ. 708: 135027.
- Jiang H, Yang J, Zhang D, Li B, Wang E, Yuan H. 2013. Concentration and community of airborne bacteria in response to cyclical haze events during the fall and midwinter in Beijing, China. China. Front. Microbiol. 9: 1741.
- Lilja T, Eklof D, Jaenson TGT, Lindstrom A, Terenius O. 2020. Single nucleotide polymorphism analysis of the ITS2 region of two sympatric malaria mosquito species in Sweden: Anopheles daciae and Anopheles messeae. Med. Vet. Entomol. 34: 364-368. https://doi.org/10.1111/mve.12436
- Wang X-C, Liu C, Huang L, Bengtsson-Palme J, Chen H, Zhang J-H, et al. 2015. ITS1: a DNA barcode better than ITS2 in eukaryotes? Mol. Ecol. Resour. 15: 573-586. https://doi.org/10.1111/1755-0998.12325