• Title/Summary/Keyword: PLM framework

Search Result 14, Processing Time 0.018 seconds

RFID Applications in Product Lifecycle Management (PLM) (제품 라이프 사이클 관리에서 RFID 응용에 관한 연구)

  • Jun, Hong-Bae
    • IE interfaces
    • /
    • v.19 no.3
    • /
    • pp.181-189
    • /
    • 2006
  • This study introduces an overall framework for RFID applications in product lifecycle management(PLM). PLM is a new strategic approach to manage product related information efficiently over the whole product lifecycle. Recently, with emerging technologies such as radio frequency identification(RFID), global positioning system(GPS), and wireless communication, PLM provides a new environment that enables us to gather and analyze product lifecycle information, and make decisions on several issues without spatial and temporal constrains. However, a PLM system just provides us with new opportunities to gain the PLM system, first and foremost, it is necessary to look into its overall framework in the viewpoint of hardware, software, and business model. For this purpose, in this study, first, we introduce the technical framework of the new PLM environment with the concept of extended RFID system, called product embedded information device(PEID). Then, for each lifecycle phase such as beginning of life(BOL), middle of life(MOL), and end of life(EOL), we explore several research problems that become highlighted under the new PLM environment.

Framework of Ship PLM System Based Upon Four-Tier Model (4-계층 모델 기반의 선박 수명주기관리 시스템 프레임워크)

  • Kim, Seung-Hyun;Lee, Jang-Hyun;Lee, Kyung-Ho;Suh, Heung-Won
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.5
    • /
    • pp.362-374
    • /
    • 2010
  • Product Lifecycle Management (PLM) is an integrated business approach to manage the creation and distribution of product information throughout the product development process. From the product perspective, PLM encompasses a holistic approach to product development and product information management. It supports the integrated product information in conjunction with the efficient product structures and BOM (Bill Of Material), user interfaces, proper functions, design processes and enterprise integration. Therefore, PLM should not only satisfy required functions as an enterprise software but also offer a systematic method for the efficient application from the initial stage of its development. Recently, many shipyards have been considering the PLM as a strategic solution to get the efficient management of product information such as 3-D models, BOM, drawings, documents, and the other product data. Though many studies on PLM are performed, most of them are performed in a function-based approach adequate for mass productive assembly industries. It could not help having limitations on applying the proper PLM system to the shipbuilding business since the requirements of shipbuilding PLM are too diverse and huge to design the architecture. This study presents the PLM framework which effectively reflects the diverse requirements of shipbuilding PLM. In order to get the macroscopic architecture of shipbuilding PLM, authors suggest the four-tier architecture model which considers the various requirements collected from shipyards. Entities of ship design data are modeled BOM in terms of product structure and hierarchical class diagram. Applicable functions of shipbuilding PLM are also investigated by analysis of issues of ship design. Finally, by reflecting the design process of shipbuilding, To-Be ship design procedure cooperated with the suggested PLM framework has been summarized.

A Study on Development of Sustainable PLM Framework (지속가능 PLM Framework 개발에 관한 연구)

  • Ahn, Yong-Ho;Ahn, Joong Min;Shin, Tae-Shik;Park, Jung-Ho;Kim, Tae-Sung
    • Journal of Digital Convergence
    • /
    • v.13 no.3
    • /
    • pp.65-73
    • /
    • 2015
  • The purpose of this study is to examine the relationship between sustainable PLM(Product Lifecycle Management) activity and performance. To ensure this purpose, we designed the S-PLM Framework which is consisted of traditional PLM activity and sustainable PLM activity. We also conducted path analysis to investigate PLM success factor on manufacturing company and to understand the relationship between these success factors. First the result of analysis of the relationship between traditional PLM activity and sustainable performance. Second, there is significantly positive relationship between sustainable activity and performance. Third, traditional PLM activity and sustainable PLM activity factor have an influence on the innovation performance factor. Fourth, sustainable performance have an effect on the management and business performance. In conclude we analyzed and verified the influence sustainable PLM establishment mechanism and the sustainable PLM activity factors. Therefore this study is to create innovative performance and to improve efficiency of Convergence PLM establishment and operation.

Ontology-Based Knowledge Framework for Product Life cycle Management (PLM 지원을 위한 온톨로지 기반 지식 프레임워크)

  • Lee Jae-Hyun;Suh Hyo-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.22-31
    • /
    • 2006
  • This paper introduces an approach to an ontology-based knowledge framework for product life cycle management (PLM). Participants in a product life cycle want to share comprehensive product knowledge without any ambiguity and heterogeneity. However, previous knowledge management approaches are limited in providing those aspects. Therefore, we suggest an ontology-based knowledge framework including knowledge maps, axioms and specific knowledge far domain. The bottom level, the axiom, specifies the semantics of concepts and relations of knowledge so that ambiguity of the semantics can be alleviated. The middle level is a product development knowledge map; it defines the concepts and the relations of the product domain common knowledge and guides engineers to process their engineering decisions. The middle level is then classified further into more detailed levels, such as generic product level, specific product level, product version level, and product item level for PLM. The top level is specialized knowledge fer a specific domain that gives the solution of a specific task or problem. It is classified into three knowledge types: expert knowledge, engineering function knowledge, and data-analysis-based knowledge. This proposed framework is based on ontology to accommodate a comprehensive range of unambiguous knowledge for PLM and is represented with first-order logic to maintain a uniform representation.

Framework for an Advanced Naval Ships Acquisition based on PLM (PLM 기반 함정획득을 위한 프레임워크 개발 방법론)

  • Shin, Jong-Gye;Oh, Dae-Kyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.2
    • /
    • pp.189-202
    • /
    • 2009
  • As naval ships become more complex with the reduced cost and time for their development, modeling and simulation are increasingly used. The US navy has being applied the concept of a simulation-based acquisition(SBA) to their acquisition process. However, there have been few studies on a simulation-based acquisition for naval ships (SBA-NS) in the Korean naval shipbuilding. In this paper, we discuss a framework to establish collaborative environment(CE) for an advanced naval ships acquisition based on PLM. For this, we propose architectures and a naval ship information model for design the framework of the SBA-NS. To design the framework, we develop the methodology that is composed of three major processes that are the requirement analysis process, the SBA-NS architectures design process and the design process of a reference model of a naval ship product information. Applying the methodology, the framework suitable for the Korean Navy context is developed.

Building and Applying Shipbuilding Ontology for BOM Data Interoperability in Heterogeneous Shipbuilding PLM Systems (이 기종 조선 PLM 시스템 간 BOM Data 교환을 위한 조선 온톨로지 Framework 구축)

  • Kim, Dae-Seok;Lee, Kyung-Ho;Lee, Jung-Min;Lee, Kwang;Kim, Jin-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.197-206
    • /
    • 2011
  • Shipbuilding is a complex industry which contains a lot of knowledge, technology, and utilities. Hence, the necessity of the PLM (Product Life-cycle Management) system which manages life-cycle information of marine product has been increased. So, many studies related to shipbuilding PLM have been preceded, and there are some cases to be built. To implement collaboration and concurrent engineering of ship designing and manufacturing, interoperability of product data in heterogeneous system is required. Also, sharing and reusing knowledge are important for innovation of business process and productivity of enterprises. Even though many studies related interoperability of product data are going on in varies domain, the application to shipbuilding is deficient. This paper proposes a methodology for management and interconnection of BOM data based on ontology in heterogeneous PLM system of shipbuilding. Using Prot$\'{e}$g$\'{e}$-OWL, we built simple domain ontology of shipbuilding industry, and then, we integrated product information of shipbuilding BOM which is represented with different ontologies. We verified possibility of integration of shipbuilding BOM in heterogeneous PLM, using ontology.

Research on the Framework for the Adoption of Digital Manufacturing Methodology with Information Strategy Planning Concept (ISP(정보 전략 계획) 개념을 이용한 디지털 생산 적용 프레임워크 연구)

  • Woo, Jong-Hun;Song, Young-Joo;Lee, Tae-Kyung;Shin, Jong-Gye
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.2
    • /
    • pp.94-105
    • /
    • 2010
  • Todays, there is fast transition about the new manufacturing IT methodologies from the conceptual phase into the practical application phase for the strengthening of enterprise competitiveness in manufacturing industry. One of those new methodologies is PLM (Product Life-cycle Management). PLM methodology consists of 3D CAD for the product design, PDM (Product Data Management) for the data management based on the collaboration platform and lastly DM (Digital Manufacturing). DM has evoluted from the stand-alone computer simulation of early 1980s, and now it covers the overall production development and production. Unfortunately, there exist serious critical problems about the actual application of DM for the real work. This is owing to the transition of the point of view from stand-alone type application (such as flow simulation or robot simulation) to that of business process about product development and production management. In this paper, we propose an application framework for the successful project with the digital manufacturing methodology with the concept of Information Strategy Planning, which enables the systematic diagnosis and the quantitative evaluation. Also, we introduce the actual practice of the proposing framework with the ISP project for 'Analysis & Simulation Technique of manufacturing process project' that is being conducted by Chungnam Techno Park.

Simulation Modeling Methodology and Simulation Framework for a Construction of a Digital Shipyard (디지털 조선소 구축 및 활용을 위한 모델링 및 시뮬레이션 프레임워크 구축 방법론)

  • Woo, Jong-Hun;Oh, Dae-Kyun;Kwon, Young-Dae;Shin, Jong-Eye;Sur, Joo-No
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.411-420
    • /
    • 2005
  • World leading company and research centers have invested much cost and effort into a PLM and digital manufacturing field to obtain their own competitiveness. We have been trying to apply a digital manufacturing, especially simulation to ship production process as a part of PLM implementation for a shipyard. A shipbuilding production system and processes have a complexity and a peculiarity different from other kinds of production systems. So, new analysis and modeling methodology is required to implement digital shipyard. which is a digital manufacturing system for a shipbuilding company. This paper suggests an analysis and simulation modeling methodologies for an implementation of a digital shipyard. New methodologies such as a database-merged simulation, a distributed simulation, a modular simulation with a model library and a 3-tire simulation framework are developed.

Simulation Modeling Methodology and Simulation System Architecture for Shipbuilding Processes (선박 건조 공정 시뮬레이션을 위한 모델링 방법론 및 시스템 아키텍처)

  • Oh D.K.;Lee C.J.;Choi Y.R.;Shin J.G;Woo J.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.1
    • /
    • pp.11-19
    • /
    • 2006
  • For several years, a research about the simulation for shipyard and shipbuilding has been performed. This research is based on the concept of PLM (Product Lifecycle Management) and DM (Digital Manufacturing). Global leading companies and research center are trying to get a good position of PLM, especially M&S field. Digital shipbuilding is to computerize shipyard facilities and shipbuilding processes, and to simulate expected scenarios of shipbuilding processes using a computer model in order to resolve a potential problem such as a bottleneck processes, and over loaded resources. In this paper, simulation methodology for shipbuilding is described. In addition, a local and global strategy for the use of simulation methodology is suggested. Finally, case studies about an indoor shop and an outdoor shop are described.