• Title/Summary/Keyword: PLL design

Search Result 298, Processing Time 0.024 seconds

A 300MHz CMOS phase-locked loop with improved pull-in process (루프인식 속도를 개선한 300MHz PLL의 설계 및 제작)

  • 이덕민;정민수;김보은;최동명;김수원
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.10
    • /
    • pp.115-122
    • /
    • 1996
  • A 300MHz PLL including FVC (frequency to voltage converter) is designed and fabricated in 0.8$\mu$m CMOS process. In this design, a FVC and a 2nd - order passive filter are added to the conventional charge-pump PLL to improve the acquisition time. The dual-rijng VCO(voltage controlled oscillator) realized in this paper has a frequency range form 208 to 320MHz. Integrated circuits have been fully tested and analyzed in detail and it is proved that pull-in speed is enhanced with the use fo FVC. In VCO range from 230MHz to 310MHz, experimental results show that realized PLL exhibits 4 times faster pull-in speed than that of conventional PLL.

  • PDF

A 50 to 150 MHz PLL with a New Phase Frequency Detector suitable for Microprocessor Application (마이크로프로세서 응용에 적합한 새로운 구조의 위상/주파수 검출기를 가지는50 to 150 MHz PLL)

  • 홍종욱;이성연;정우경;이용석
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.955-958
    • /
    • 1999
  • We designed a phase locked loop (PLL), which is applicable to microprocessor clock generation application. The designed PLL has a new simple phase frequency detector (PFD) which eliminate dead-zone and has a good high frequency characteristic. The lock-in range of the designed PLL is 50 MHz ~ 150 MHz at 3.3v power supply voltage. The design is carried out using a 0.6${\mu}{\textrm}{m}$ triple metal CMOS process. The area of the layout is 0.35mm by 0.42mm with 359 transistors.

  • PDF

Design of a High Speed CMOS PLL with a Two-stage Self-feedback Ring Oscillator (자체귀환형 2단 고리발진기를 이용한 고속 CMOS PLL 설계)

  • 문연국;윤광섭
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.353-356
    • /
    • 1999
  • A 3.3V PLL(Phase Locked loop) is designed for a high frequency, low voltage, and low power applications. This paper proposes a new PLL architecture to improve voltage to frequency linearity of VCO(Voltage controlled oscillator) with new delay cell. The proposed VCO operates at a wide frequency range of 30MHz~1㎓ with a good linearity. The DC-DC voltage up/down converter is utilized to regulate the control voltage of the two-stage VCO. The designed PLL architecture is implemented on a 0.6${\mu}{\textrm}{m}$ n-well CMOS process. The simulation results show a locking time of 2.6$\mu$sec at 1Hz, Lock in range of 100MHz~1㎓, and a power dissipation of 112㎽.

  • PDF

A Continuously Tunable LC-VCO PLL with Bandwidth Linearization Techniques for PCI Express Gen2 Applications

  • Rhee, Woo-Geun;Ainspan, Herschel;Friedman, Daniel J.;Rasmus, Todd;Garvin, Stacy;Cranford, Clay
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.200-209
    • /
    • 2008
  • This paper describes bandwidth linearization techniques in phase-locked loop (PLL) design for common-clock serial link applications. Utilizing a continuously tunable single-input dual-path LC VCO and a constant-gain phase detector, a proposed architecture is well suited to implementing PLLs that must be compliant with standards that specify minimum and maximum allowable bandwidths such as PCI Express Gen2 or FB-DIMM applications. A prototype 4.75 to 6.1-GHz PLL is implemented in 90-nm CMOS. Measurement results show that the PLL bandwidth and random jitter (RJ) variations are well regulated and that the use of a differentially controlled dual-path VCO is important for deterministic jitter (DJ) performance.

A Study on the Driving Circuit of Piezoelectric Ultrasonic Motor Using PLL Technique (PLL을 이용한 압전 초음파 모터의 구동회로에 관한 연구)

  • ;;Sergey Borodin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.1
    • /
    • pp.33-38
    • /
    • 2003
  • This paper describes control principles of the piezoelectric ultrasonic motor which is operated by the ultrasonic vibration generated by the piezoelectric element. The piezoelectric ultrasonic motor has excellent characteristics such as compact size, noiseless motion, low speed, high torque and controllability, and has been recently applied for the practical utilization in industrial, consumer, medical and automotive fields. In this paper, the design of two-phase push-pull inverter for driving the piezoelectric ultrasonic motor is described, and a new control method of automatic resonant frequency tracking using PLL(Phase-Locked Loop) technique is mainly presented. the experimental results by this inverter system for driving the piezoelectric ultrasonic motor are illustrated herein. The inverter system with PLL technique improved the speed stability of the piezoelectric ultrasonic motor.

Evaluation of EM Susceptibility of an PLL on Power Domain Networks of Various Printed Circuit Boards (다양한 PCB의 전원 분배 망에서의 PLL의 전자기 내성 검증)

  • Hwang, Won-Jun;Wee, Jae-Kyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.74-82
    • /
    • 2015
  • As the complexity of an electronic device and the reduction of its operating voltage is progressing, susceptibility test of the chip and module for internal or external noises is essential. Although the immunity compliance of the chip was served with IEC 62132-4 Direct Power Injection method as an industry standard, in fact, EM immunity of the chip is influenced by their Power Domain Network (PDN). This paper evaluates the EM noise tolerance of a PLL and compares their noise transfer characteristics to the PLL on various PCB boards. To make differences of the PDNs of PCBs, various PCBs with or without LDO and with several types of capacitors are tested. For evaluation of discrepancies between EM characteristics of an IC only and the IC on real boards, the analysis of the noise transfer characteristics according to the PDNs shows that it gives important information for the design having robust EM characteristics. DPI measurement results show that greatly improved immunity of the PLL in the low-frequency region according to using the LDO and a frequency change of the PLL according to the DPI could also check with TEM cell measurement spectrum.

Hybrid Type Structure Design and DLT-Replacement Circuit of the High-Speed Frequency Synthesizer (고속 스위칭 동작의 주파수 합성기를 위한 하이브리드형 구조 설계와 DLT 대체 회로 연구)

  • Lee Hun-Hee;Heo Keun-Jae;Jung Rag-Gyu;Ryu Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.12 s.91
    • /
    • pp.1161-1167
    • /
    • 2004
  • The conventional PLL(phase locked loop) frequency synthesizer takes a long switching time because of the inherent closed-loop structure. The digital hybrid PLL(DH-PLL) which includes the open-loop structure into the conventional PLL synthesizer has been studied to overcome this demerit. It operates in high speed, but the hardware complexity and power consumption are the serious problem because the DLT(digital look-up table) is usually implemented by the ROM which contains the transfer characteristic of VCO(voltage controlled oscillator). This paper proposes a new DH-PLL using a very simple DLT-replacement digital logic instead of the complex ROM-type DLT. Also, a timing synchronization circuit for the very small over-shoot and shorter settling time is designed for the ultra fast switching speed at every frequency synthesis. The hardware complexity gets decreased to about $28\%,$ as compared with the conventional DH-PLL. The high speed switching characteristic of the frequency synthesis process can be verified by the computer simulation and the circuit implementation.

Phase Control Loop Design based on Second Order PLL Loop Filter for Solid Type High Q-factor Resonant Gyroscope (고체형 정밀 공진 자이로스코프를 위한 이차 PLL 루프필터 기반 위상제어루프 설계)

  • Park, Sang-Jun;Yong, Ki-Ryeok;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.546-554
    • /
    • 2012
  • This paper suggests a design method of an improved phase control loop for tracking resonant frequency of solid type precision resonant gyroscope. In general, a low cost MEMS gyroscope adapts the automatic gain control loops by taking a velocity feedback configuration. This control technique for controlling the resonance amplitude shows a stable performance. But in terms of resonant frequency tracking, this technique shows an unreliable performance due to phase errors because the AGC method cannot provide an active phase control capability. For the resonance control loop design of a solid type precision resonant gyroscope, this paper presents a phase domain control loop based on linear PLL (Phase Locked Loop). In particular, phase control loop is exploited using a higher order PLL loop filter by extending the first order active PI (Proportion-Integral) filter. For the verification of the proposed loop design, a hemispherical resonant gyroscope is considered. Numerical simulation result demonstrates that the control loop shows a robust performance against initial resonant frequency gap between resonator and voltage control oscillator. Also it is verified that the designed loop achieves a stable oscillation even under the initial frequency gap condition of about 25 Hz, which amounts to about 1% of the natural frequency of a conventional resonant gyroscope.

Design and Fabrication of Low Phase-Noise Frequency Synthesizer using Dual Loop PLL for IMT-2000 (이중루프 PLL을 이용한 IMT-2000용 저위상잡음 주파수합성기의 설계 및 제작)

  • 김광선;최현철
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.163-166
    • /
    • 1999
  • In this paper, frequency synthesizer that can be used in IMT-2000 was designed and fabricated using dual loop PLL(Phase Locked Loop). For improving phase noise characteristic Voltage Controlled Oscillator was fabricated using coaxial resonator and eliminated frequency divider using SPD as phase detector and increased open loop gain. Fabricated frequency synthesizer had 1.82㎓ center frequency, 160MHz tuning range and -119.73㏈c/Hz low phase noise characteristic.

  • PDF