• Title/Summary/Keyword: PLA-PEG-PLA

Search Result 19, Processing Time 0.024 seconds

MD Simulation of PLA-PEG Composites for Additive Manufacturing (적층 가공에서 적용 가능한 PLA-PEG 복합재료의 MD Simulation)

  • Songhee Ham;Youngjoon Jeon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-290
    • /
    • 2023
  • Poly-lactic acid (PLA) is the most promising polymer in additive manufacturing as an alternative to acrylonitrile butadiene styrene (ABS). Since it is produced from renewable resources such as corn starch and sugar beets, it is also biocompatible and biodegradable. However, PLA has a couple of issues that limit its use. First, it has a comparatively low glass transition temperature of around 60 ℃, such that it exhibits low thermal resistance. Second, PLA has low impact strength because it is brittle. Due to these problems, scientists have found methods to improve the crystallinity and ductility of PLA. Polyethylene glycol (PEG) is one of the most studied plasticizers for PLA to give it chain mobility. However, the blend of PLA and PEG becomes unstable, and phase separation occurs even at room temperature as PEG is self-crystallized. Thus, it is necessary to investigate the optimal mixing ratio of PLA-PEG at the molecular scale. In this study, molecular dynamics will be conducted with various ratios of L-type PLA (PLLA) or DL-type PLA-PEG (PDLA-PEG) systems by using BIOVIA Materials Studio.

Effect of In Vitro Degradation on the Weight Loss and Tensile Strength of PLA/PEG Melt Blend Fiber (In Vitro 분해가 PLA/PEG 용융블렌드 섬유의 무게감량률 및 인장강도에 미치는 영향)

  • Yoon, Cheol-Soo;Ji, Dong-Sun
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.581-587
    • /
    • 2009
  • PLA/PEG blend fibers composed of poly (lactic acid) (PLA) and poly (ethylene glycol) (PEG) were prepared via melt blending and spinning for bioabsorbable filament sutures. The blend fibers hydrolyzed with the immersion in a phosphate buffer solution at pH 7.4 and $37\;^{\circ}C$ for 1~8 weeks. The effects of blending time, blend composition, and hydrolysis time on the weight loss and tensile strength of the hydrolyzed blend fibers were investigated. After hydrolysis, the weight loss of the blend fibers increased with increasing PEG content, blending time, and hydrolysis time. The tensile strength and tensile modulus of the blend fibers decreased with increasing PEG content, blending time, and hydrolysis time. Therefore, it can be concluded that the weight loss of the PLA/PEG blend fibers was less than 0.9% even at hydrolysis time of 2 weeks and their strength retentions were over 90%.

Preparation and Characterization of PEG-PLA(PLGA) Micelles for Solubilization of Pioglitazone (Pioglitazone 가용화를 위한 PEG-PLA(PLGA) 고분자 미셀의 제조 및 특성분석)

  • Im, Jeong-Hyuk;Lee, Yong-Kyu;Huh, Kang-Moo
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.143-149
    • /
    • 2008
  • We synthesized PEG-PLA (or PLGA) amphiphilic di-block copolymers, which consist of PEG as biocompatible and hydrophilic block and PLA (or PLGA) as biodegradable and hydrophobic block, by ring opening polymerization of LA in the presence of methoxy PEG as a macroinitiator. The compositions and the molecular weights of the copolymers were controlled by changing the feed ratio of LA (and GA) to PEG initiator. The di-block copolymers could self-assemble in aqueous media to form micellar structure. A hydrophobic model drug, pioglitazone, was loaded into the polymer micelle using solid dispersion and dialysis methods, and the drug-loaded micelles were characterized by AFM, DLS and HPLC measurements. The drug loading capacity and in vitro release studies were performed and evaluated under various conditions. These results indicated that the amphiphilic di-block copolymers of PEG-PLA (or PLGA) could solubilize pioglitazone by solid dispersion method and the drug release was modulated according to micellar chemical compositions.

Preparation and Characterization of PEG/PLA Multiblock and Triblock Copolymer

  • Zhao, Hesong;Liu, Zhun;Park, Sang-Hyuk;Kim, Sang-Ho;Kim, Jung-Hyun;Piao, Longhai
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1638-1642
    • /
    • 2012
  • A series of poly (lactic acid) (PLA) and poly (ethylene glycol) (PEG) tri and multiblock copolymers with relatively high molecular weights were synthesized through the coupling reaction between the bis(acyl chloride) of carboxylated PLA and mono or dihydroxy PEG. The coupling reaction and the copolymer structures were monitored by nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The melting temperature (Tm) of PEG blocks decreased with the presence of PLA sequences attaching to PEG blocks. The CMC values were determined to be 10-145 mg/L depending on the length of PLA and PEG blocks and the structure of the block copolymers.

A Polymeric Micellar Carrier for the Solubilization of Biphenyl Dimethyl Dicarboxylate

  • Chi, Sang-Cheol;Yeom, Dae-Il;Kim, Sung-Chul;Park, Eun-Seok
    • Archives of Pharmacal Research
    • /
    • v.26 no.2
    • /
    • pp.173-181
    • /
    • 2003
  • A polymeric micelle drug delivery system was developed to enhance the solubility of poorly-water soluble drug, biphenyl dimethyl dicarboxylate, DDB. The block copolymers consisting of poly(D,L-lactide) (PLA) as the hydrophobic segment and methoxy poly(ethylene glycol) (mPEG) as the hydrophilic segment were synthesized and characterized by NMR, DSC and MALDI-TOF mass spectroscopy. The size of the polymeric micelles measured by dynamic light scattering showed a narrow monodisperse size distribution with the average diameter less than 50 nm. The MW of mPEG-PLA, 3000 (MW of mPEG, 2 K; MW of PLA, 1K), and the presence of hydrophilic and hydrophobic segments on the polymeric micelles were confirmed by MALDI-TOF mass spectroscopy and NMR, respectively. Polymeric micelle solutions of DDB were prepared by three different methods, i.e. the matrix method, emulsion method and dialysis method. In the matrix method, DDB solubility was reached to 13.29 mg/mL. The mPEG-PLA 2K-1K micelle system was compared with the poloxamer 407 micelle system for their critical micelle concentration, micelle size, solubilizing capacity, stability in dilution and physical state. DDB loaded-polymeric micelles prepared by the matrix method showed a significantly increased aqueous solubility (>5000 fold over intrinsic solubility) and were found to be superior to the poloxamer 407 micelles as a drug carrier.

Influence of Plasticizers on Mechanical, Thermal, and Migration Properties of Poly(Lactic Acid)/Zeolite Composites

  • Qin, Pei;Jung, Hyun-Mo;Choi, Dong-Soo;Hwang, Sung-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.2_1
    • /
    • pp.79-89
    • /
    • 2021
  • Poly(lactic acid) (PLA) is considered as one of the most promising bio-based polymers due to its high strength, high modulus, good processability, transparency after processing, and commercial availability. This study aimed to investigate the mechanical, thermal, and migration properties of poly(lactic acid)/zeolite (10 phr) composites prepared with various biocompatible plasticizers, such as triethyl citrate(TEC), tributyl citrate(TBC), and poly(ethylene glycol)(PEG400), through differential scanning calorimetry(DSC), thermo-gravimetric analysis(TGA) and standard tensile testing. The incorporation of PEG400 significantly increased the elongation at break, and DSC results showed that the addition of plasticizers drastically decreased the Tg of PLA/zeolite composites and improved the melt flow and processability. Besides, it was found from TGA results that PLA/zeolites composites plasticized by TEC and TBC were more easily to be thermally degraded than the composites plasticized by PEG400.

Cervical Cancer Gene Therapy by Gene Loaded PEG-PLA Nanomedicine

  • Liu, Bo;Han, Shu-Mei;Tang, Xiao-Yong;Han, Li;Li, Chang-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4915-4918
    • /
    • 2014
  • Background and Aims: Advances in the treatment of cervical cancer over the last decade have predominantly involved the development of genes directed at molecular targets. Gene therapy is recognized to be a novel method for the treatment of cervical cancer. Genes can be administered into target cells via nanocarriers. This study aimed to develop systemically administrable nano-vectors. Floate (Fa) containing gene loaded nanoparticles (NPs) could target HeLa human cervical cancer cells through combination with receptors on the cells to increase the nuclear uptake of genetic materials. Methods: Fa was linked onto Poly (ethylene glycol)-b-poly (D, L-lactide) (PEG-PLA) to form Fa-PEG-PLA, and the resulting material was used to load plasmids of enhanced green fluorescence protein (pEGFP) to obtain gene loaded nanoparticles (Fa-NPs/DNA). Physical-chemical characteristics, in vitro release and cytotoxicity of Fa-NPs/DNA were evaluated. The in vitro transfection efficiency of Fa-NPs/DNA was evaluated in HeLa cells and human umbilical vein endothelial cells (HUVEC). PEG-PLA without Fa was used to load pEGFP from NPs/DNA as a control. Results: Fa-NPs/DNA has a particle size of 183 nm and a gene loading quantity of 92%. After 72h of transfection, Fa-NPs/DNA displayed over 20% higher transfection efficiency than NPs/DNA and 40% higher than naked DNA in HeLa cells. However, in HUVECs, no significant difference appeared between Fa-NPs/DNA and NPs/DNA. Conclusions: Fa-PEG-PLA NPs could function as excellent materials for gene loading. This nano-approach could be used as tumor cell targeted medicine for the treatment of cervical cancer.

Properties of Smart Vapor Self-Releasing Composite Films to Microwave Packaging (증기 자가방출 스마트 전자레인지 포장재 적용을 위한 복합필름 특성연구)

  • Wooseok, Song;Hojun, Shin;Jongchul, Seo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.157-163
    • /
    • 2022
  • The demands for Home Meal Replacement (HMR) products are continuously increasing owing to the convenience of instant food and online food delivery. Ready-to-heat (RTH) products have received massive attention in the HMR industry because these products can be easily warmed using a microwave oven. However, the conventional microwave packaging should be opened before microwave heating to prevent bursting or food loss owing to the steam-pressure build-up inside the package. Open packaging might lead to non-uniform food heating and cross-contamination. Therefore, packaging materials that are able to release steam without opening are of interest to the HMR industry. In this study, polylactic acid(PLA)/polyethylene glycol(PEG)/nanoclay composite films were manufactured using an extrusion method as packaging materials with a smart steam-releasing function. The introduction of PEG to the PLA imparted a steam self-releasing feature to the composite films owing to the morphology change of composite films during microwave heating. Further, PEG increased the ductility of PLA, which in turn prevented bursting caused due to the steam-pressure build-up. The uniform dispersion of nanoclay obtained by a twin-screw extrusion led to stronger mechanical properties. Therefore, the smart composite films developed here can be applied as microwave packaging materials with a self-releasing function.

In situ Gel Forming Stereocomplex Composed of Four-Arm PEG-PDLA and PEG-PLLA Block Copolymers

  • Jun, Yeo-Jin;Park, Kyung-Min;Joung, Yoon-Ki;Park, Ki-Dong;Lee, Seung-Jin
    • Macromolecular Research
    • /
    • v.16 no.8
    • /
    • pp.704-710
    • /
    • 2008
  • Injectable hydrogels are quite promising materials due to their potential to minimize invasive implantation and this provides versatile fitness irrespective of the damaged regions and facilitates the incorporation of bioactive agents or cells. In situ gel formation through stereocomplex formation is a promising candidate for injectable hydrogels. In this paper, a new series of enantiomeric, four-arm, PEG-PLA block copolymers and their stereocomplexed hydrogels were prepared by bulk ring-opening polymerization of D-lactide and L-lactide, respectively, with stannous octoate as a catalyst. The prepared polymers were characterized by $^1H$ nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT IR) spectroscopy, gel permeation chromatography (GPC) and thermal gravitational analysis (TGA), confirming the tailored structure and chain lengths. The swelling and degradation behavior of the hydrogels formed from a selected copolymer series were observed in different concentrations. The degradation rate decreased with increasing polymer content in the solution. The rheological behavior indicated that the prepared hydrogel underwent in situ gelation and had favorable mechanical strength. In addition, its feasibility as an injectable scaffold was evaluated using a media dependence test for cell culture. A Tris solution was more favorable for in situ gel formation than PBS and DMEM solutions were. These results demonstrated the in situ formation of hydrogel through the construction of a stereocomplex with enantiomeric, 4-arm, PEG-PLA copolymers. Overall, enantiomeric, 4-arm, PEG-PLA copolymers are a new species of stereocomplexed hydrogels that are suitable for further research into injectable hydrogels.

Encapsulation of CdSe/ZnS Quantum Dots in Poly(ethylene glycol)-Poly(D,L-lactide) Micelle for Biomedical Imaging and Detection

  • Lee, Yong-Kyu;Hong, Suk-Min;Kim, Jin-Su;Im, Jeong-Hyuk;Min, Hyun-Su;Subramanyam, Elango;Huh, Kang-Moo;Park, Sung-Woo
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.330-336
    • /
    • 2007
  • Luminescent CdSe/ZnS QDs, with emission in the red region of the spectrum, were synthesized and encapsulated in poly(ethylene glycol)-poly(D,L-lactide) diblock copolymer micelles, to prepare water-soluble, bio-compatible QD micelles. PEG-PLA diblock copolymers were synthesized by ring opening polymerization of D,L-lactide, in the presence of methoxy PEG as a macro initiator. QDs were encapsulated with PEG-PLA polymers using a solid dispersion method in chloroform. The resultant polymer micelles, with encapsulated QDs, were characterized using various analytical techniques, such as UV- Vis measurement, light scattering, fluorescence spectroscopy, transmission electron microscopy (TEM) and atomic forced microscopy (AFM). The polymer micelles, with encapsulated QDs, were spherical and showed diameters in the range of 20-150 nm. The encapsulated QDs were highly luminescent, and have high potential for applications in biomedical imaging and detection.