DOI QR코드

DOI QR Code

Preparation and Characterization of PEG/PLA Multiblock and Triblock Copolymer

  • Zhao, Hesong (Department of Chemistry, Kongju National University) ;
  • Liu, Zhun (Department of Chemistry, Kongju National University) ;
  • Park, Sang-Hyuk (Department of Chemistry, Kongju National University) ;
  • Kim, Sang-Ho (Department of Chemistry, Kongju National University) ;
  • Kim, Jung-Hyun (Division of Chemical Engineering and Biotechnology, Yonsei University) ;
  • Piao, Longhai (Department of Chemistry, Kongju National University)
  • Received : 2012.12.21
  • Accepted : 2012.02.16
  • Published : 2012.05.20

Abstract

A series of poly (lactic acid) (PLA) and poly (ethylene glycol) (PEG) tri and multiblock copolymers with relatively high molecular weights were synthesized through the coupling reaction between the bis(acyl chloride) of carboxylated PLA and mono or dihydroxy PEG. The coupling reaction and the copolymer structures were monitored by nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The melting temperature (Tm) of PEG blocks decreased with the presence of PLA sequences attaching to PEG blocks. The CMC values were determined to be 10-145 mg/L depending on the length of PLA and PEG blocks and the structure of the block copolymers.

Keywords

References

  1. Piao, L. H.; Deng, M. X.; Chen, X. S.; Jiang, L. S.; Jing, X. B. Polymer 2003, 44, 2331. https://doi.org/10.1016/S0032-3861(03)00118-6
  2. Sodergard, A.; Stolt, M. Prog. Polym. Sci. 2002, 27, 1123. https://doi.org/10.1016/S0079-6700(02)00012-6
  3. Vainionpaa, S.; Rokkanen, P.; Tormala, P. Prog. Polym. Sci. 1989, 14, 679. https://doi.org/10.1016/0079-6700(89)90013-0
  4. Dell'Erba, R.; Groeninckx, G.; Maglio, G.; Malinconico, M.; Migliozzi, A. Polymer 2001, 42, 7831. https://doi.org/10.1016/S0032-3861(01)00269-5
  5. Rusa, C. C.; Tonelli, A. E. Macromolecules 2000, 33, 5321. https://doi.org/10.1021/ma000746h
  6. Zhong, Z. Y.; Zhang, J.; Gan, Z. H.; Jing, X. B. Polymer International 1998, 45, 60. https://doi.org/10.1002/(SICI)1097-0126(199801)45:1<60::AID-PI891>3.0.CO;2-W
  7. In't Veld, P. J. A.; Velner, E. M.; Van De Witte, P.; Hamhuis, J.; Dijkstra, P. J.; Feijen, J. J. Polym. Sci. Part A: Polym. Chem. 1997, 35, 219. https://doi.org/10.1002/(SICI)1099-0518(19970130)35:2<219::AID-POLA3>3.0.CO;2-N
  8. Maglio, G.; Migliozzi, A.; Palumbo, R.; Immirzi, B.; Volpe, M. G. Macromol. Rapid Commun. 1999, 20, 236. https://doi.org/10.1002/(SICI)1521-3927(19990401)20:4<236::AID-MARC236>3.0.CO;2-V
  9. Duda, A.; Biela, T.; Libiszowski, J.; Penczek, S.; Dubois, P.; Mecerreyes, D.; Jerome, R. Polym. Degrad. Stab. 1998, 59, 215. https://doi.org/10.1016/S0141-3910(97)00167-5
  10. Chabot, F.; Vert, M.; Chapelle, S.; Granger, P. Polymer 1983, 24, 53. https://doi.org/10.1016/0032-3861(83)90080-0
  11. Rashkov, I.; Manolova, N.; Li, S. M.; Espartero, J. L.; Vert, M. Macromolecules 1996, 29, 50. https://doi.org/10.1021/ma950530t
  12. Cho, H. K.; Lone, S.; Kim, D. D.; Choi, J. H.; Choi, S. W.; Cho, J. H.; Kim, J. H.; Cheong, I. W. Polymer 2009, 50, 2357. https://doi.org/10.1016/j.polymer.2009.03.032
  13. Hagan, S. A.; Coombes, A. G. A.; Garnett, M. C.; Dunn, S. E.; Davies, M. C.; Illum, L.; Davis, S. S. Langmuir 1996, 12, 2153. https://doi.org/10.1021/la950649v
  14. Emoto, K.; Nagasaki, Y.; Kataoka, K. Langmuir 1999, 15, 5212. https://doi.org/10.1021/la980918s
  15. Fujiwara, T.; Miyamoto, M.; Kimura, Y. Macromolecules 2000, 33, 2782. https://doi.org/10.1021/ma991253j
  16. Wu, T.; He, Y.; Fan, Z. Y.; Wei, J.; Li, S. M. Polymer Engineering & Science 2008, 48, 425. https://doi.org/10.1002/pen.20955
  17. Lu, C.; Guo, S.; Liu, L.; Zhang, Y.; Li, Z.; Gu, J. Journal of Polymer Science Part B: Polymer Physics 2006, 44, 3406.

Cited by

  1. Composition, Morphology and Properties of Poly(lactic acid) and Poly(butylene succinate) Copolymer System via Coupling Reaction vol.50, pp.8, 2013, https://doi.org/10.1080/10601325.2013.802196
  2. Biofabrication of hybrid bone scaffolds using a dual-nozzle bioplotter and in-vitro study of osteoblast cell vol.15, pp.9, 2014, https://doi.org/10.1007/s12541-014-0549-9
  3. Poly(butylene succinate-co-butylene adipate)/polyethylene oxide blends for controlled release materials: A morphological study vol.133, pp.3, 2015, https://doi.org/10.1002/app.42874
  4. Fluorescent microspheres of poly(ethylene glycol)-poly(lactic acid)-fluorescein copolymers synthesized by Ugi four-component condensation vol.133, pp.9, 2016, https://doi.org/10.1002/app.42994
  5. Size-Controlled Nanomicelles of Poly(lactic acid)–Poly(ethylene glycol) Copolymers with a Multiblock Configuration vol.7, pp.6, 2015, https://doi.org/10.3390/polym7061177
  6. Preparation and Swelling Behavior of L-Lactide Interpenetrating Networks vol.06, pp.04, 2016, https://doi.org/10.4236/ojopm.2016.64012
  7. -(2-Hydroxypropyl)methacrylamide Engineered with Hydrolyzable Ethylcarbonate Side Chains vol.17, pp.1, 2016, https://doi.org/10.1021/acs.biomac.5b01252
  8. block polymer micelles for anticancer drug delivery vol.68, pp.6, 2016, https://doi.org/10.1111/jphp.12545
  9. -Poly(propylene carbonate) Block Copolymers vol.214, pp.24, 2013, https://doi.org/10.1002/macp.201300586
  10. Investigation into the Anticancer Activity and Apoptosis Induction of Brevinin-2R and Brevinin-2R-Conjugated PLA–PEG–PLA Nanoparticles and Strong Cell Cycle Arrest in AGS, HepG2 and KYSE-30 Cell Lines pp.1573-3904, 2019, https://doi.org/10.1007/s10989-018-9772-z
  11. Dynamic actuation of glassy polymersomes through isomerization of a single azobenzene unit at the block copolymer interface vol.10, pp.6, 2018, https://doi.org/10.1038/s41557-018-0027-6
  12. Heparin-Tagged PLA-PEG Copolymer-Encapsulated Biochanin A-Loaded (Mg/Al) LDH Nanoparticles Recommended for Non-Thrombogenic and Anti-Proliferative Stent Coating vol.22, pp.11, 2012, https://doi.org/10.3390/ijms22115433