• 제목/요약/키워드: PLA composites

검색결과 46건 처리시간 0.026초

Thermal conductivity of PLA-bamboo fiber composites

  • Takagi, Hitoshi;Kako, Shuhei;Kusano, Koji;Ousaka, Akiharu
    • Advanced Composite Materials
    • /
    • 제16권4호
    • /
    • pp.377-384
    • /
    • 2007
  • 'Green' composites were fabricated from poly lactic acid (PLA) and bamboo fibers by using a conventional hot pressing method. The insulating properties of the PLA-bamboo fiber 'green' composites were evaluated by determination of the thermal conductivity, which was measured using a hot-wire method. The thermal conductivity values were compared with theoretical estimations. It was demonstrated that thermal conductivity of PLA-bamboo fiber 'green' composites is smaller than that of conventional composites, such as glass fiber reinforced plastics (GFRPs) and carbon fiber reinforced plastics (CFRPs). The thermal conductivity of PLA-bamboo fiber 'green' composites was significantly influenced by their density, and was in fair agreement with theoretical predictions based on Russell's model. The PLA-bamboo fiber composites have low thermal conductivity comparable with that of woods.

Characterization and Properties of Composites of Woodflour and Polylactic Acid

  • Febrianto, Fauzi;Yoshioka, Mariko;Nagai, Yuko;Syafii, Wasrin;Shiraishi, Nobuo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제34권5호
    • /
    • pp.67-78
    • /
    • 2006
  • Modification of polylactic acid (PLA) and 10% maleic anhydride (MAH) with 15% dicumyl peroxide (DCP) based on MAH weight was conducted in the kneader at $160^{\circ}C$ and 30~70 rpm, for 15 min. The resulting MAH-modified PLA (PLA-MA) was then evaluated as a compatibilizer for PLA-wood flour (WF) composites. The FTIR and $^1H$-NMR analysis gave evidence of PLA-MA formation. After kneading and reacting with MAH and DCP, the number (Mn) and the weight average (Mw) molecular weights of PLA decreased as compared to the original PLA. The presence of WF in the composites decreased the tensile strength and several other physical properties. The higher the WF loading resulted in the greater the reduction of tensile strength. An addition of 10% PLA-MA as a compatibilizer to the composites improved the tensile strength and several other physical properties, increased the flow temperature, and decreased the melt viscosity. The improved composite revealed 1.42 times increased in tensile strength but not over PLA alone, and absorbed considerably less water compared to those of the composites free-compatibilizer.

Physical and electrical properties of PLA-carbon composites

  • Kang Z. Khor;Cheow K. Yeoh;Pei L. Teh;Thangarajan Mathanesh;Wee C. Wong
    • Advances in materials Research
    • /
    • 제13권3호
    • /
    • pp.211-220
    • /
    • 2024
  • Polylactic acid or polylactide (PLA) is a biodegradable thermoplastic that can be produced from renewable material to create various components for industrial purposes. In 3D printing technology, PLA is used due to its good mechanical, electrical, printing properties, environmentally friendly and non-toxic properties. However, the physical properties and excellent electrical insulation properties of PLA have limited its application. In this study, with the carbon black (CB) as filler added into PLA, the lattice spacing and morphology were investigated by using X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The physical properties of PLA-carbon composite were evaluated by using tensile test, shore D hardness test and density and voids measurement. Impedance test was conducted to investigate the electrical properties of PLA-Carbon composites. The results demonstrate that the inclusion of carbon black as filler enhances the physical properties of the PLA-carbon composites, including tensile properties, hardness, and density. The addition of carbon black also leads to improved electrical conductivity of the composites. Better enhancement toward the electrical properties of PLA-carbon composites is observed with 1wt% of carbon black in N774 grade. The N550 grade with 2wt% of carbon black shows better improvement in the physical properties of PLA-carbon composites, achieving 10.686 MPa in tensile testing, 43.330 in shore D hardness test, and a density of 1.200 g/cm3 in density measurement. The findings suggest that PLA-carbon composites have the potential for enhanced performance in various industrial applications, particularly in sectors requiring improved physical and electrical properties.

Manufacturing and Mechanical Properties of Sisal Fiber Reinforced Hybrid Composites

  • Hui, Zhi-Peng;Sudhakara, P.;Wang, Yi-Qi;Kim, Byung-Sun;Song, Jung-Il
    • Composites Research
    • /
    • 제26권5호
    • /
    • pp.273-278
    • /
    • 2013
  • PLA/PP polymer blends in various ratios (PLA:PP = 9:1, 4:1, 3:1, and 1:1), and their composites (PLA:PP = 1:1) with sisal fiber (10, 15 and 20 wt%) were fabricated using MAPP as compatibilizer. The aim of the work was to reduce the cost of biodegradable composites as well as to improve the impact strength of PLA using PP, a relatively cheaper thermoplastic. The developed composites were characterized for their morphological and mechanical properties. The tensile strength and modulus of the blends were decreased with increasing PP content whereas the strain at break and impact strength are increased. The tensile strength, modulus and water absorption were increased for hybrid composites with increasing fiber content.

3D 프린터 필라멘트 제작용 대나무/PLA 바이오복합재료 개발 연구 (A Study on the Development of Bamboo/PLA Bio-composites for 3D Printer Filament)

  • 신윤정;윤현주;이은주;정우양
    • Journal of the Korean Wood Science and Technology
    • /
    • 제46권1호
    • /
    • pp.107-113
    • /
    • 2018
  • 본 연구에서는 대표적인 친환경 소재인 바이오복합재료(bio-composite)를 이용한 3D 프린터 필라멘트를 제작하였다. 바이오복합재료의 제조를 위해 매트릭스로는 생분해성 고분자인 poly lactic acid (PLA)를 그리고 충전제로는 대나무 분말(Bamboo flour)을 사용하였다. 대나무는 담양에서 생산되는 왕대, 솜대, 죽순대를 이용하였으며, 대나무 분말과 PLA의 혼합비율은 중량기준 10/90, 20/80, 30/70으로 설정하였다. 3개 죽종으로 제조한 대나무/PLA 바이오복합재료의 기본물성 평가를 위해 인장강도를 비교하였다. 그 결과, 왕대 분말/PLA의 비율이 10/90일 때의 인장강도가 7.12 MPa로 가장 높게 나타남으로써 3D 프린터 필라멘트 제작용 대나무/PLA 바이오복합재료로 가장 적합한 것으로 판단되었으며, 현미경 관찰 결과, 죽분의 함량을 더욱 낮춘 필라멘트를 제작할 필요성이 있다고 판단된다.

Thermal behavior of Flame Retardant Filled PLA-WF Bio-Composites

  • Choi, Seung-Woo;Lee, Byoung-Ho;Kim, Hyun-Joong;Kim, Hee-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권2호
    • /
    • pp.155-163
    • /
    • 2009
  • This study examined the thermal stability of PLA-WF bio-composites. Wood flour (WF)-filled PLA bio-composites were reinforced with the flame retardants, Melamine pyrophosphate (MPP), resorcinol bis (diphenyl phosphate) (RDP) and zinc borate (ZB). The flame retardant was compounded with PLA and natural biodegradable filler. The thermal properties of the biodegradable polymer and bio-composites reinforced with the flame retardant were measured and analyzed by DSC, DMA and TGA. The results showed that the flame retardant-reinforced biodegradable bio-composite exhibited improved thermal properties.

Preparation and Physical Properties of Poly(lactic acid) Bio-Composites using Surface Modified Microfibriled Celluloses

  • Yeo, Jun-Seok;Seong, Dong-Wook;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • 제50권1호
    • /
    • pp.62-67
    • /
    • 2015
  • The surface modification of microfibriled cellulose (MFC) was carried out through the hydrolysis-condensation reaction using (3-aminopropyl)triethoxysilane (APS) and 3-glycidyloxypropyltriethoxysilane (GPS) and then the modified cellulose was compounded with bio-degradable poly(lactic acid) (PLA). Also, pristine MFC was compounded with PLA as a control groups. The confirmation of surface modification for the pristine MFC was characterized by FT-IR and SEM/EDX. The thermal and mechanical properties of the PLA/MFC composites depended on the content of MFC and the type of silane coupling agents. From the thermal, morphological and mechanical behaviors of the PLA/MFC composites, it was found that GPS-MFC was more successful to improve the interface adhesion between PLA matrix and the surface of MFC than that of APS-MFC.

Influence of Plasticizers on Mechanical, Thermal, and Migration Properties of Poly(Lactic Acid)/Zeolite Composites

  • Qin, Pei;Jung, Hyun-Mo;Choi, Dong-Soo;Hwang, Sung-Wook
    • 한국산업융합학회 논문집
    • /
    • 제24권2_1호
    • /
    • pp.79-89
    • /
    • 2021
  • Poly(lactic acid) (PLA) is considered as one of the most promising bio-based polymers due to its high strength, high modulus, good processability, transparency after processing, and commercial availability. This study aimed to investigate the mechanical, thermal, and migration properties of poly(lactic acid)/zeolite (10 phr) composites prepared with various biocompatible plasticizers, such as triethyl citrate(TEC), tributyl citrate(TBC), and poly(ethylene glycol)(PEG400), through differential scanning calorimetry(DSC), thermo-gravimetric analysis(TGA) and standard tensile testing. The incorporation of PEG400 significantly increased the elongation at break, and DSC results showed that the addition of plasticizers drastically decreased the Tg of PLA/zeolite composites and improved the melt flow and processability. Besides, it was found from TGA results that PLA/zeolites composites plasticized by TEC and TBC were more easily to be thermally degraded than the composites plasticized by PEG400.

말레산 무수물로 그래프트된 고분자량의 폴리락트산 상용화제가 폴리락트산 기반의 합성목재에 미치는 영향 (Effect of High-molecular-weight Maleic Anhydride-grafted Polylactic Acid Compatibilizer on the Properties of Polylactic acid-based Wood Polymer Composites)

  • 한동헌;이종인;오승주;남병욱;배진우
    • 한국산학기술학회논문지
    • /
    • 제22권6호
    • /
    • pp.275-282
    • /
    • 2021
  • Maleic anhydride (MA)와 divinylbenzene (DVB)을 개시제인 di(tert-butyl-perxoyisopropyl)benzene (PK-14)과 함께 이축 압출기에서 용융 그래프팅 반응을 통해 상용화제인 high-molecular-weight maleic anhydride-grafted polylactic acids (HMMA-g-PLA)를 제조하였다. 제조된 HMMA-g-PLA의 특성을 분석하기 위해 Fourier transform infrared (FTIR), Melt index (MI), 그리고 역적정을 실시하였다. HMMA-g-PLA는 DVB의 함량이 증가함에 따라 MA의 그래프팅율은 증가하나 MI는 감소하였는데, DVB의 도입으로 PLA의 𝛽-scission 반응이 억제되어 분자량이 증가되었기 때문이다. HMMA-g-PLA를 사용한 PLA기반 합성목재(wood-plastic composites, WPCs)는 matrix인 PLA에 보강재인 목재와 무기 충전재인 talc를 첨가하여 일축 압출기로 용융 블렌드하였다. 상용화제인 HMMA-g-PLA가 도입된 WPCs는 도입되지 않은 WPCs와 비교하여 더 높은 굴곡강도 및 충격강도를 보였다. 이것은 Scanning electron microscope (SEM) 분석을 통해 HMMA-g-PLA의 첨가로 PLA와 목분과의 계면 결합력이 우수해졌기 때문인 것을 알 수 있었다. 하지만 HMMA-g-PLA의 함량이 높을 때는 WPCs의 기계적 물성을 악화시켰다. 이는 도입된 HMMA-g-PLA 상용화제의 분자량이 PLA 고분자 수지보다 더 낮아 기계적 물성을 감소시킨 것으로 판단하였다.

Fused Filament Fabrication of Poly (Lactic Acid) Reinforced with Silane-Treated Cellulose Fiber for 3D Printing

  • Young-Rok SEO;Birm-June KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • 제52권3호
    • /
    • pp.205-220
    • /
    • 2024
  • Various polylactic acid (PLA) blends were reinforced with untreated or silane-treated micro-sized cellulose fiber (MCF), successfully prepared as 3D printing filaments and then printed using a fused filament fabrication (FFF) 3D printer. In this study, we focused on developing 3D-printed MCF/PLA composites through silane treatment of MCF and investigating the effect of silane treatment on the various properties of FFF 3D-printed composites. Fourier transform infrared spectra confirmed the increase in hydrophobic properties of silane-treated MCF by showing the new absorption peaks at 1,100 cm-1, 1,030 cm-1, and 815 cm-1 representing C-NH2, Si-O-Si, and Si-CH2 bonds, respectively. In scanning electron microscope images of silane-treated MCF filled PLA composites, the improved interfacial adhesion between MCF and PLA matrix was observed. The mechanical properties of the 3D-printed MCF/PLA composites with silane-treated MCF were improved compared to those of the 3D-printed MCF/PLA composites with untreated MCF. In particular, the highest tensile and flexural modulus values were observed for S-MCF10 (5,784.77 MPa) and S-MCF5 (2,441.67 MPa), respectively. The thermal stability of silane-treated MCF was enhanced by delaying the initial thermal decomposition temperature compared to untreated MCF. The thermal decomposition temperature difference at T95 was around 26℃. This study suggests that the effect of silane treatment on the 3D-printed MCF/PLA composites is effective and promising.