Characterization and Properties of Composites of Woodflour and Polylactic Acid

  • Received : 2006.02.13
  • Accepted : 2006.03.30
  • Published : 2006.09.25

Abstract

Modification of polylactic acid (PLA) and 10% maleic anhydride (MAH) with 15% dicumyl peroxide (DCP) based on MAH weight was conducted in the kneader at $160^{\circ}C$ and 30~70 rpm, for 15 min. The resulting MAH-modified PLA (PLA-MA) was then evaluated as a compatibilizer for PLA-wood flour (WF) composites. The FTIR and $^1H$-NMR analysis gave evidence of PLA-MA formation. After kneading and reacting with MAH and DCP, the number (Mn) and the weight average (Mw) molecular weights of PLA decreased as compared to the original PLA. The presence of WF in the composites decreased the tensile strength and several other physical properties. The higher the WF loading resulted in the greater the reduction of tensile strength. An addition of 10% PLA-MA as a compatibilizer to the composites improved the tensile strength and several other physical properties, increased the flow temperature, and decreased the melt viscosity. The improved composite revealed 1.42 times increased in tensile strength but not over PLA alone, and absorbed considerably less water compared to those of the composites free-compatibilizer.

Keywords

References

  1. Albano, C., M. Ichazo, J. Gonzalez, M. Delgado, and R. Poleo. 2001. Effects of filler treatments on the mechanical and morphological behavior of PP + wood flour and PP + sisal fiber. Mat Res Innovat. 4: 284-293 https://doi.org/10.1007/s100190000108
  2. Febrianto F., D. Setyawati., M. Karina., E. S. Bakar., and Y. S. Hadi. 2006. Influence of wood flour and modifier content on physical and mechanical properties of wood flour-recycle polypropylene. Journal of Biological Sciences 6(2): 337-343 https://doi.org/10.3923/jbs.2006.337.343
  3. Febrianto F., M Yoshioka., Y. Nagai., M. Mihara., and N. Shiraishi. 1999. Composites of Wood and Trans-1,4-Isoprene Rubber I : Mechanical, Physical, and Flow Behavior. Journal Wood Science 45: 38-45 https://doi.org/10.1007/BF00579522
  4. Febrianto, F., M. Yoshioka., Y. Nagai., M. Mihara., and N. Shiraishi. 2001. Composites of Wood and Trans-1,4-Isoprene Rubber II : Processing Conditions for Production of Composites. Journal Wood Science and Technology 35 : 297-310 Springer-Verlag https://doi.org/10.1007/s002260100102
  5. Felix, J. and P. Gatenholm. 1991. The nature of adhesion in composites of modified cellulose fibers and polypropylene. Journal of Applied Polymer Science 42: 609-620 https://doi.org/10.1002/app.1991.070420307
  6. Flodin, P., P. Zadorecki. 1986. Cellulose-reinforced polyester. Composites system from natural and synthetic polymers. Elsevier Sci. Publ., Amsterdam. pp. 59-63
  7. Glasser, W., R. Taib, R. Jain, and R. Kander. 1999. Fiber-reinforced cellulosic thermoplastic composites. Journal of Applied Polymer Science 73: 1329- 1340 https://doi.org/10.1002/(SICI)1097-4628(19990815)73:7<1329::AID-APP26>3.0.CO;2-Q
  8. Han, G. S. 1990. Preparation and physical properties of moldable wood-plastic composites. Ph.D. Thesis, 87 p. Kyoto University
  9. Hedenberg, P. and P. Gatenholm. 1995. Conversion of plastic/cellulose waste into composites. I. Model of the interphase. Journal of Applied Polymer Science, 56: 641-651 https://doi.org/10.1002/app.1995.070560601
  10. Kazayawoko, M., J. Balatinecz, and L. Matuana. 1999. Surface modification and adhesion mechanisms in wood fiber-polypropylene composites. Journal of Materials Science, 34(24): 6189-6199 https://doi.org/10.1023/A:1004790409158
  11. Kim, T., Y. Lee, and S. Im. 1997. The preparation and characteristics of low-density polyethylene composites containing cellulose treated with cellulase. Polymer Composites, 18(3): 273-282 https://doi.org/10.1002/pc.10281
  12. Kishi, H., M. Yoshioka, A. Yamanoi, and N. Shiraishi. 1989. Composites of wood and polypropylene I: Mokuzai Gakkaishi 34 (2): 133-139
  13. Lunt, J., A. L. Shafer. 2000. Polylactic acid polymers from corn. Application in the textiles industry. J Industrial Textiles 29: 191-205 https://doi.org/10.1106/LVY7-VBVF-V8LR-L5AT
  14. Maldas, D. and B. Kokta. 1990. Influence of phthalic anhydride as a coupling agent on the mechanical behavior of wood fiber-polystyrene composites. Journal of Applied Polymer Science, 41: 185-194 https://doi.org/10.1002/app.1990.070410116
  15. Oksman, K., H. Lindberg, and A. Holmgren. 1998. The nature and location of SEBS-MA compatibilizer in polyethylene-wood flour composites. Journal of Applied Polymer Science, 69: 201-209 https://doi.org/10.1002/(SICI)1097-4628(19980705)69:1<201::AID-APP23>3.0.CO;2-0
  16. Rennecker, S. H. 2004. Modification of wood fiber with thermoplastics by reactive steam-explosion processing. Ph.D Dissertation of Virginia Polytechnic Institute & State University, USA. p. 192
  17. Sinclair, R. G. 1996. The case for polylactic acid as a commodity packaging plastic. J.M.S.Pure Appl. Chem., 33(5): 585-597 https://doi.org/10.1080/10601329608010880
  18. Sombatsompop, N., C. Yotinwattanakumtorn, and C. Thongpin. 2005. Influence of type and concentration of maleic anhydride grafted polypropylne and impact modifier on mechanical properties of PP/wood sawdust composites. Journal of Applied Polymer Science, 97: 475-484 https://doi.org/10.1002/app.21765
  19. Van De Velde, K. and P. Kiekens. 2001. Influence of fiber surface characteristics on the flax/polypropylene interface. Journal of Thermoplastic Composite Materials, 14: 244-260 https://doi.org/10.1106/13PW-MYJU-8HCJ-B1T1
  20. Whiteman, N., P. DeLassus., and J. Gunderson. 2002. New flavor and aroma barrier thermoplastic polylactitide, polyolefins. International Conference on Polyolefins, Houston Texas USA
  21. Zaini, M. J., M. Y. A. Fuad., Z. Ismail., M. S. Mansor, and J. Mustafa. 1996. The effect of filler content and size on the mechanical properties of polypropylene/oil palm wood composites. Polym. Int. 40: 51-55 https://doi.org/10.1002/(SICI)1097-0126(199605)40:1<51::AID-PI514>3.0.CO;2-I