• Title/Summary/Keyword: PISO Method

Search Result 28, Processing Time 0.024 seconds

A Study on the Generation and Transmission of a Pressure Wave Induced by Rapid Heating of Compressible Fluid (압축성 유체의 급속 가열에 기인한 압력파의 생성 및 전달특성에 관한 연구)

  • 황인주;김윤제
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.29-34
    • /
    • 2003
  • Thermo-acoustic waves can be generated in a compressible fluid by rapid heating and cooling near the boundary walls. These phenomena are very important mechanism of heat transfer in the space environment in which natural convection does not exist. In this study, the generation and transmission characteristics of thermo-acoustic waves in an air filled enclosure with rapid wall heating are studied numerically. The governing equations were discretized using control volume method, and were solved using PISO algorithm and second-order upwind scheme. For the stable solution time step were considered as t=1$\times$$10^{-9}$ order, and grids are 50$\times$800. The induced thermo-acoustic wave propagates through the fluid until it decays due to viscous and heat dissipation. The wave showed sharp front shape and decreased with long tail.

FPGA Design of Adaptive Digital Receiver for Wireless Identification (무선인식을 위한 적응적 디지털 수신기의 FPGA 설계)

  • Seo Young-Ho;Kim Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.745-752
    • /
    • 2005
  • In this paper we propose and implement a digital part of a receiver system for identifying a moving object and its tracking position in wireless environment. We assumed UWB(Ultra Wide Band)-based communication system for target application and used serial communication method(RS-232). The proposed digital receiver consists of RS-232-type1/RS-232-type2 for input and output of serial communication, ID Detector for detecting IDs, and PISO&Buffer circuit to buffer input signals for appropriate operation of ID Detector. We implemented the digital receiver with minimal hardware(H/W) resource according to target application of UWB-based communication system. So it correlates input patterns with pre-stored patterns though repeated detecting method for multiple IDs. Since it has reference panerns in the Ve-stored form, it can detect various IDs instantly. Also we can program content and size of reference patterns considering compatibility with other systems .The implemented H/W was mapped into XC2S100PQ208-5 FPGA of Xilinx, occupied 727($30\%$) cells, and stably operated in the clock frequency of 75MHz(13.341ns).

Numerical Simulation for an Air-Solid Two-Phase Flow in a Vertical Pipe (기체 흐름에 고체입자가 섞인 파이프 내의 이상유동에 대한 수치 해석)

  • Pak S. I.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.41-46
    • /
    • 2002
  • A numerical simulation was made to determine the motion of particles in the fluid. The simulation is based on the Eulerian-Lagrangian method. The fluid motion was solved using a PISO-based finite-element method and a $\kappa-\epsilon$ model of turbulence. In the Lagrangian method for the solid phase, the trajectories of particles are calculated by integrating the equations of motion of a single Particle, and the collision between particles are taken into account. The influence of particles on the fluid phase is taken into account by introducing source terms in the Eulerian equations govering the fluid flow. It is known as the particle-source-in-cell (PSIC) method. Also, the turbulent effect in the particles and fluid notion is considered. The numerical results were compared with the experiment for a two-phase flow in a vertical pipe.

  • PDF

A New Pressure-Based Finite Element Method Applicable to Viscous Flows at All Speed Ranges (모든 속도영역의 점성유동에 적용 가능한 새로운 압력기반 유한요소법)

  • Shim Eun-Bo;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.169-174
    • /
    • 1995
  • A finite element scheme using the concept of PISO method has been developed to solve the viscous flow problems in all speed range. In this study, new pressure equation is proposed such that both the hyperbolic term related with the density variations and elliptic term reflecting the incompressibility constraint are included. Present method has been applied to incompressible flow in two-dimensional driven cavity(Re=100, 400 and 1,000), and its computed results are compared with other's. Also, Carter plate problem(M=3 and Re=1,000) is computed and the comparison is made with Carter's results. Finally, we simulate a shock-boundary layer interaction problem(M=2 and $Re=2.96{\times}10^5$) to illustrate the shock capturing capability of the present solution algorithm.

  • PDF

A Fully-implicit Velocity Pressure coupling Algorithm-IDEAL and Its Applications

  • SUN, Dong-Liang;QU, Zhi-Guo;He, Ya-Ling;Tao, Wen-Quan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.1-13
    • /
    • 2008
  • An efficient segregated algorithm for the coupling of velocity and pressure of incompressible fluid flow, called IDEAL Inner Doubly-Iterative Efficient Algorithm for Linked-Equations), has been proposed by the present authors. In the algorithm there exist double inner iterative processes for pressure equation at each iteration level, which almost completely overcome two approximations in SIMPLE algorithm. Thus the coupling between velocity and pressure is fully guaranteed, greatly enhancing the convergence rate and stability of solution process. The performance of the IDEAL algorithm for three-dimensional incompressible fluid flow and heat transfer problems is analyzed and a systemic comparison is made between the algorithm and three other most widely-used algorithms (SIMPLER, SIMPLEC and PISO). It is found that the IDEAL algorithm is the most robust and the most efficient one among the four algorithms compared. This new algorithm is used for the velocity prediction of a new interface capturing method. VOSET, also proposed by the present author. It is found that the combination of VOSET and IDEAL can appreciably enhance both the interface capture accuracy and convergence rate of computations.

  • PDF

A Fully-implicit Velocity Pressure coupling Algorithm-IDEAL and Its Applications

  • Sun, Dong-Liang;Qu, Zhi-Guo;He, Ya-Ling;Tao, Wen-Quan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1-13
    • /
    • 2008
  • An efficient segregated algorithm for the coupling of velocity and pressure of incompressible fluid flow, called IDEAL (Inner Doubly-Iterative Efficient Algorithm for Linked-Equations), has been proposed by the present authors. In the algorithm there exist double inner iterative processes for pressure equation at each iteration level, which almost completely overcome two approximations in SIMPLE algorithm. Thus the coupling between velocity and pressure is fully guaranteed, greatly enhancing the convergence rate and stability of solution process. The performance of the IDEAL algorithm for three-dimensional incompressible fluid flow and heat transfer problems is analyzed and a systemic comparison is made between the algorithm and three other most widely-used algorithms (SIMPLER, SIMPLEC and PISO). It is found that the IDEAL algorithm is the most robust and the most efficient one among the four algorithms compared. This new algorithm is used for the velocity prediction of a new interface capturing method -VOSET, also proposed by the present author. It is found that the combination of VOSET and IDEAL can appreciably enhance both the interface capture accuracy and convergence rate of computations.

  • PDF

A Numerical Study of Smoke Movement with Radiation in Atrium Fires (아트리움에서 화재 발생시 복사가 고려된 연기거동에 대한 수치해석 연구)

  • 정진용;유홍선;홍기배
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.7-15
    • /
    • 2001
  • This paper describes the smoke filling process of a fire field model based on a self-developed SMEP (Smoke Movement Estimating Program) codo to the simulation of fire induced flows in the atrium space (SIVANS atrium at Japan) containing smoke radiation effect. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k-$\varepsilon$ turbulence model with buoyancy term. Also it solves the radiation equation using the discrete ordinates method. The result of the calculated smoke temperature containing radiation effect has shown a better prediction than the result calculated by only convection effect in comparison with the experimental data. This seems to come from the radiation effect of $H_2$O and $CO_2$ gas under smoke productions. Thus, the consideration of the radiation effect under smoke in fire should be necessary in order to get more realistic result. Also the numerical results indicated that the smoke layer is developing at a rate of about 0.1 m/s. It would take about 450 seconds after starting the ultra fast fire of 560 kW that the smoke layer move down to 1.5m above the escape level.

  • PDF

A Numerical Study of Radiation Effect under Smoke Movement in Room Fire (실내화재에서 연기거동에 미치는 복사영향에 대한 수치해석적 연구)

  • 정진용;유홍선;홍기배
    • Fire Science and Engineering
    • /
    • v.14 no.3
    • /
    • pp.6-12
    • /
    • 2000
  • This paper describes the smoke movement of a fire field model based on a self-developed SMEP(Smoke Movement Estimating Program) code to the simulation of fire induced flows in the two types of compartment space containing the radiation effect under smoke movement in room fire. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k-$\varepsilon $ turbulence model with buoyancy term. Also it solves the radiation equation using the discrete ordinates method. The result of the calculated smoke temperature containing radiation effect has shown reasonable agreement compared with the experimental data. On the other hand, a difference of a lot was found between the temperature predicted by the SMEP with only convection effect and obtained by the experimental result. This seems to come from the radiation effect of $H_2$O and $CO_2$ gas under smoke productions. Thus, the consideration of the radiation effect under smoke in fire may be necessary in order to produce more realistic result.

  • PDF

Effects of Wave Focusing Device on Performance of OWC Chamber (OWC형 파력발전 공기실의 파랑집중장치의 효과에 대한 수치적인 연구)

  • Liu, Zhen;Hyun, Beom-Soo;Hong, Key-Yong;Jin, Ji-Yuan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.12-17
    • /
    • 2010
  • Oscillating Water Column (OWC) device has been widely employed in the wave energy conversion. Wave Focusing Device (WFD) is proposed to be helpful for improving the operating performance of OWC chamber. In the present paper, a Numerical Wave Tank (NWT) using two-phase VOF model is utilized to simulate the generation and propagation of incident regular waves, water column oscillation inside the chamber. The NWT consists of the continuity equation, Reynolds-averaged Navier-Stokes equations and two-phase VOF functions. The standard k- turbulence model, the finite volume method, NITA-PISO algorithm and dynamic mesh technique are employed. Effects of WFD on the operating performance of OWC chamber are investigated numerically.

Computational analysis of hemodynamics in a human ventricular model (인간 심실모델에서의 혈류역학 해석)

  • Shim, Eun-Bo;Kwon, Soon-Sung;Kim, Yoo-Seok;Jung, Hyung-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2947-2950
    • /
    • 2007
  • A 3D human ventricular model is proposed to simulate an integrative analysis of heart physiology and blood hemodynamics. This consists of the models of electrophysiology of human cells, electric wave propagation of tissue, heart solid mechanics, and 3D blood hemodynamics. The 3D geometry of human heart is discretized to a finite element mesh for the simulation of electric wave propagation and mechanics of heart. In cellular level, excitations by action potential are simulated using the existing human model. Then the contraction mechanics of a whole cell is incorporated to the excitation model. The excitation propagation to ventricular cells are transiently computed in the 3D cardiac tissue using a mono-domain method of electric wave propagation in cardiac tissue. Blood hemodynamics in heart is also considered and incorporated with muscle contraction. We use a PISO type finite element method to simulate the blood hemodynmaics in the human ventricular model.

  • PDF