Effects of Wave Focusing Device on Performance of OWC Chamber

OWC형 파력발전 공기실의 파랑집중장치의 효과에 대한 수치적인 연구

  • Liu, Zhen (Shandong Province Key Laboratory of Ocean Engineering, Ocean University of China) ;
  • Hyun, Beom-Soo (College of Ocean Science and Technology, Korea Maritime University) ;
  • Hong, Key-Yong (Maritime and Ocean Engineering Research Institute, KORDI) ;
  • Jin, Ji-Yuan (College of Ocean Science and Technology, Korea Maritime University)
  • 류진 (중국해양대학교 산동성중점해양공학실험실) ;
  • 현범수 (한국해양대학교 조선해양시스템공학부) ;
  • 홍기용 (한국해양연구원 해양시스템안전연구소) ;
  • 김길원 (한국해양대학교 조선해양시스템공학부)
  • Received : 2009.11.09
  • Accepted : 2010.02.09
  • Published : 2010.02.25

Abstract

Oscillating Water Column (OWC) device has been widely employed in the wave energy conversion. Wave Focusing Device (WFD) is proposed to be helpful for improving the operating performance of OWC chamber. In the present paper, a Numerical Wave Tank (NWT) using two-phase VOF model is utilized to simulate the generation and propagation of incident regular waves, water column oscillation inside the chamber. The NWT consists of the continuity equation, Reynolds-averaged Navier-Stokes equations and two-phase VOF functions. The standard k- turbulence model, the finite volume method, NITA-PISO algorithm and dynamic mesh technique are employed. Effects of WFD on the operating performance of OWC chamber are investigated numerically.

OWC 파력발전장치는 에너지 변환장치로 널리 사용되고 있고 공기실의 작동성능을 향상시키기 위하여 파랑집중장치를 고안 하였다. 본 논문에서 사용된 수치조파수조는 two-phase VOF모델을 기반으로 하여 구현되었고 재생된 규칙 입사파는 공기실까지 전달되어 내부의 왕복 유동장을 형성하게 하였다. 수치조파수조는 연속방정식, Reynolds-averaged Navier-Stokes방정식, two-phase VOF 법으로 구성 되였고 standard k- 난류모델, 유한체적법, NITA-PISO 알고리즘 그리고 dynamic mesh기능을 채택하였다. OWC 공기실 파랑집중장치의 성능에 대하여 수치적으로 고찰하였다.

Keywords

References

  1. Evans, D.V., 1982, "Wave-Power Absorption by Systems of Oscillating Surface Pressure Distributions", J Fluid Mech., Vol. 114, 489-499.
  2. Hirt, C.W. and Nichols, B.D., 1981, "Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries", J. Comp. Phys., Vol. 39, 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  3. Hong K.Y., Shin, S.H., Hong, D.C., Choi, H.S. and Hong, S.W., 2007, "Effects of Shape Parameters of OWC Chamber in Wave Energy Absorption", Proc. 17th Int. Offshore and Polar Eng Conf., Lisbon, Portugal, ISOPE, Vol. 1, 428-433.
  4. Josset, C. and Clement, A.H., 2007, "A Time-Domain Numerical Simulator for Oscillating Water Column Wave Power Plants", Renewable Energy, Vol. 32, 1379-1402. https://doi.org/10.1016/j.renene.2006.04.016
  5. Liang X.G., Sun, P.Y. and You, Y.G., 2002, "Performance Experiment of Shanwei 100kw Wave Power Station's Air-Room (in Chinese)", The Ocean Engineering, Vol. 21, 113-116.
  6. Sommerfeld, A., 1949, "Partial Differential Equation in Physics", Academic Press, New York.
  7. Wang D.J., Mahmoud, K. and Lambros, B., 2002, "Hydrodynamic Analysis of Shoreline OWC Type Wave Energy Converters", Journal of Hydrodynamics, Ser. B 1, 8-15.
  8. You, Y.G., 1993, "Hydrodynamic Analysis on Wave Power Devices in Near-Shore Zones", Journal of Hydrodynamics, Ser. B 5, 42-54.
  9. Youngs, D.L., 1982, "Time-Dependent Multi-Material Flow with Large Fluid Distortion", Num. Meth. Fluid Dynamics, Academic Press, New York.