• Title/Summary/Keyword: PIN Code

Search Result 97, Processing Time 0.019 seconds

Application of the SCIANTIX fission gas behaviour module to the integral pin performance in sodium fast reactor irradiation conditions

  • Magni, A.;Pizzocri, D.;Luzzi, L.;Lainet, M.;Michel, B.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2395-2407
    • /
    • 2022
  • The sodium-cooled fast reactor is among the innovative nuclear technologies selected in the framework of the development of Generation IV concepts, allowing the irradiation of uranium-plutonium mixed oxide fuels (MOX). A fundamental step for the safety assessment of MOX-fuelled pins for fast reactor applications is the evaluation, by means of fuel performance codes, of the integral thermal-mechanical behaviour under irradiation, involving the fission gas behaviour and release in the fuel-cladding gap. This work is dedicated to the performance analysis of an inner-core fuel pin representative of the ASTRID sodium-cooled concept design, selected as case study for the benchmark between the GERMINAL and TRANSURANUS fuel performance codes. The focus is on fission gas-related mechanisms and integral outcomes as predicted by means of the SCIANTIX module (allowing the physics-based treatment of inert gas behaviour and release) coupled to both fuel performance codes. The benchmark activity involves the application of both GERMINAL and TRANSURANUS in their "pre-INSPYRE" versions, i.e., adopting the state-of-the-art recommended correlations available in the codes, compared with the "post-INSPYRE" code results, obtained by implementing novel models for MOX fuel properties and phenomena (SCIANTIX included) developed in the framework of the INSPYRE H2020 Project. The SCIANTIX modelling includes the consideration of burst releases of the fission gas stored at the grain boundaries occurring during power transients of shutdown and start-up, whose effect on a fast reactor fuel concept is analysed. A clear need to further extend and validate the SCIANTIX module for application to fast reactor MOX emerges from this work; nevertheless, the GERMINAL-TRANSURANUS benchmark on the ASTRID case study highlights the achieved code capabilities for fast reactor conditions and paves the way towards the proper application of fuel performance codes to safety evaluations on Generation IV reactor concepts.

Assessment of three European fuel performance codes against the SUPERFACT-1 fast reactor irradiation experiment

  • Luzzi, L.;Barani, T.;Boer, B.;Cognini, L.;Nevo, A. Del;Lainet, M.;Lemehov, S.;Magni, A.;Marelle, V.;Michel, B.;Pizzocri, D.;Schubert, A.;Uffelen, P. Van;Bertolus, M.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3367-3378
    • /
    • 2021
  • The design phase and safety assessment of Generation IV liquid metal-cooled fast reactors calls for the improvement of fuel pin performance codes, in particular the enhancement of their predictive capabilities towards uranium-plutonium mixed oxide fuels and stainless-steel cladding under irradiation in fast reactor environments. To this end, the current capabilities of fuel performance codes must be critically assessed against experimental data from available irradiation experiments. This work is devoted to the assessment of three European fuel performance codes, namely GERMINAL, MACROS and TRANSURANUS, against the irradiation of two fuel pins selected from the SUPERFACT-1 experimental campaign. The pins are characterized by a low enrichment (~ 2 wt.%) of minor actinides (neptunium and americium) in the fuel, and by plutonium content and cladding material in line with design choices envisaged for liquid metal-cooled Generation IV reactor fuels. The predictions of the codes are compared to several experimental measurements, allowing the identification of the current code capabilities in predicting fuel restructuring, cladding deformation, redistribution of actinides and volatile fission products. The integral assessment against experimental data is complemented by a code-to-code benchmark focused on the evolution of quantities of engineering interest over time. The benchmark analysis points out the differences in the code predictions of fuel central temperature, fuel-cladding gap width, cladding outer radius, pin internal pressure and fission gas release and suggests potential modelling development paths towards an improved description of the fuel pin behaviour in fast reactor irradiation conditions.

Analysis of Anti-Reversing Functionalities of VMProtect and Bypass Method Using Pin (VMProtect의 역공학 방해 기능 분석 및 Pin을 이용한 우회 방안)

  • Park, Seongwoo;Park, Yongsu
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.11
    • /
    • pp.297-304
    • /
    • 2021
  • Commercial obfuscation tools (protectors) aim to create difficulties in analyzing the operation process of software by applying obfuscation techniques and Anti-reversing techniques that delay and interrupt the analysis of programs in software reverse engineering process. In particular, in case of virtualization detection and anti-debugging functions, the analysis tool exits the normal execution flow and terminates the program. In this paper, we analyze Anti-reversing techniques of executables with Debugger Detection and Viralization Tools Detection options through VMProtect 3.5.0, one of the commercial obfuscation tools (protector), and address bypass methods using Pin. In addition, we predicted the location of the applied obfuscation technique by finding out a specific program termination routine through API analysis since there is a problem that the program is terminated by the Anti-VM technology and the Anti-DBI technology and drew up the algorithm flowchart for bypassing the Anti-reversing techniques. Considering compatibility problems and changes in techniques from differences in versions of the software used in experiment, it was confirmed that the bypass was successful by writing the pin automation bypass code in the latest version of the software (VMProtect, Windows, Pin) and conducting the experiment. By improving the proposed analysis method, it is possible to analyze the Anti-reversing method of the obfuscation tool for which the method is not presented so far and find a bypass method.

Structural Classification and Enumeration of Pin-Jointed Kinematic Chains (핀 조인트로 구성된 기구학적 연쇄들의 구조적 분류 및 열거)

  • 이종기;신재균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.565-572
    • /
    • 1994
  • A method for the classification of kinematic chains according to the similarity in their structures is proposed. Classifcation code is defined from the contracted graph of the kinematic chain. This method of classifying kinematic chains can be effectively used for the systematic enumeration of structurally distinct kinematic chains given the number of links and degrees of freedom of the kinematic chains. Two separate steps for the enumeration are developed in the study. The first step is to generated all the possible classification codes and the next step is to generate individual kinematic chains belonging to each classification code generated. Using this two step procedure, kinematic chains up to 12 links are successfully enumerated in the present study. It is concluded that the two step method can be efficiently used for the type synthesis of mechanisms.

Neutronics design of VVER-1000 fuel assembly with burnable poison particles

  • Tran, Hoai-Nam;Hoang, Van-Khanh;Liem, Peng Hong;Hoang, Hung T.P.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1729-1737
    • /
    • 2019
  • This paper presents neutronics design of VVER-1000 fuel assembly using burnable poison particles (BPPs) for controlling excess reactivity and pin-wise power distribution. The advantage of using BPPs is that the thermal conductivity of BPP-dispersed fuel pin could be improved. Numerical calculations have been conducted for optimizing the BPP parameters using the MVP code and the JENDL-3.3 data library. The results show that by using $Gd_2O_3$ particles with the diameter of $60{\mu}m$ and the packing fraction of 5%, the burnup reactivity curve and pin-wise power distribution are obtained approximately that of the reference design. To minimize power peaking factor (PPF), total BP amount has been distributed in a larger number of fuel rods. Optimization has been conducted for the number of BPP-dispersed rods, their distribution, BPP diameter and packing fraction. Two models of assembly consisting of 18 BPP-dispersed rods have been selected. The diameter of $300{\mu}m$ and the packing fraction of 3.33% were determined so that the burnup reactivity curve is approximate that of the reference one, while the PPF can be decreased from 1.167 to 1.105 and 1.113, respectively. Application of BPPs for compensating the reduction of soluble boron content to 50% and 0% is also investigated.

NTP-ERSN verification with C5G7 1D extension benchmark and GUI development

  • Lahdour, M.;El Bardouni, T.;El Hajjaji, O.;Chakir, E.;Mohammed, M.;Al Zain, Jamal;Ziani, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1079-1087
    • /
    • 2021
  • NTP-ERSN is a package developed for solving the multigroup form of the discrete ordinates, characteristics and collision probability of the Boltzmann transport equation in one-dimensional cartesian geometry, by combining pin cells. In this work, C5G7 MOX benchmark is used to verify the accuracy and efficiency of NTP-ERSN package, by treating reactor core problems without spatial homogenization. This benchmark requires solutions in the form of normalized pin powers as well as the vectors and the eigenvalue. All NTP-ERSN simulations are carried out with appropriate spatial and angular approximations. A good agreement between NTP-ERSN results with those obtained with OpenMC calculation code for seven energy groups. In addition, our studies about angular and mesh refinements are carried out to produce better quality solution. Moreover, NTP-ERSN GUI has also been updated and adapted to python 3 programming language.

Application of CUPID for subchannel-scale thermal-hydraulic analysis of pressurized water reactor core under single-phase conditions

  • Yoon, Seok Jong;Kim, Seul Been;Park, Goon Cherl;Yoon, Han Young;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.54-67
    • /
    • 2018
  • There have been recent efforts to establish methods for high-fidelity and multi-physics simulation with coupled thermal-hydraulic (T/H) and neutronics codes for the entire core of a light water reactor under accident conditions. Considering the computing power necessary for a pin-by-pin analysis of the entire core, subchannel-scale T/H analysis is considered appropriate to achieve acceptable accuracy in an optimal computational time. In the present study, the applicability of in-house code CUPID of the Korea Atomic Energy Research Institute was extended to the subchannel-scale T/H analysis. CUPID is a component-scale T/H analysis code, which uses three-dimensional two-fluid models with various closure models and incorporates a highly parallelized numerical solver. In this study, key models required for a subchannel-scale T/H analysis were implemented in CUPID. Afterward, the code was validated against four subchannel experiments under unheated and heated single-phase incompressible flow conditions. Thereafter, a subchannel-scale T/H analysis of the entire core for an Advanced Power Reactor 1400 reactor core was carried out. For the high-fidelity simulation, detailed geometrical features and individual rod power distributions were considered in this demonstration. In this study, CUPID shows its capability of reproducing key phenomena in a subchannel and dealing with the subchannel-scale whole core T/H analysis.

CFD investigation of a JAEA 7-pin fuel assembly experiment with local blockage for SFR

  • Jeong, Jae-Ho;Song, Min-Seop
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3207-3216
    • /
    • 2021
  • Three-dimensional structures of a vortical flow field and heat transfer characteristics in a partially blocked 7-pin fuel assembly mock-up of sodium-cooled fast reactor have been investigated through a numerical analysis using a commercial computational fluid dynamics code, ANSYS CFX. The simulation with the SST turbulence model agrees well with the experimental data of outlet and cladding wall temperatures. From the analysis on the limiting streamline at the wall, multi-scale vortexes developed in axial direction were found around the blockage. The vortex core has a high cladding wall temperature, and the attachment line has a low cladding wall temperature. The small-scale vortex structures significantly enhance the convective heat transfer because it increases the turbulent mixing and the turbulence kinetic energy. The large-scale vortex structures supply thermal energy near the heated cladding wall surface. It is expected that control of the vortex structures in the fuel assembly plays a significant role in the convective heat transfer enhancement. Furthermore, the blockage plate and grid spacer increase the pressure drop to about 36% compared to the bare case.

Application of TULIP/STREAM code in 2-D fast reactor core high-fidelity neutronic analysis

  • Du, Xianan;Choe, Jiwon;Choi, Sooyoung;Lee, Woonghee;Cherezov, Alexey;Lim, Jaeyong;Lee, Minjae;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1871-1885
    • /
    • 2019
  • The deterministic MOC code STREAM of the Computational Reactor Physics and Experiment (CORE) laboratory of Ulsan National Institute of Science and Technology (UNIST), was initially designed for the calculation of pressurized water reactor two- and three-dimensional assemblies and cores. Since fast reactors play an important role in the generation-IV concept, it was decided that the code should be upgraded for the analysis of fast neutron spectrum reactors. This paper presents a coupled code - TULIP/STREAM, developed for the fast reactor assembly and core calculations. The TULIP code produces self-shielded multi-group cross-sections using a one-dimensional cylindrical model. The generated cross-section library is used in the STREAM code which solves eigenvalue problems for a two-dimensional assembly and a multi-assembly whole reactor core. Multiplication factors and steady-state power distributions were compared with the reference solutions obtained by the continuous energy Monte-Carlo code MCS. With the developed code, a sensitivity study of the number of energy groups, the order of anisotropic PN scattering, and the multi-group cross-section generation model was performed on the keff and power distribution. The 2D core simulation calculations show that the TULIP/STREAM code gives a keff error smaller than 200 pcm and the root mean square errors of the pin-wise power distributions within 2%.

Packet Error Rate Characteristics of an Optical Packet Switching Node with an Optical Packet Address Processor Using an EDFA Preamplifier (광 패킷 어드레스 처리기에 EDFA 전치 증폭기를 사용한 광 패킷 교환 노드의 패킷 오율 특성)

  • 윤찬호;백승환;신종덕
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.7
    • /
    • pp.1777-1784
    • /
    • 1998
  • The packet error rates of an optical packet switching node with an optical address processor using an EDFA in order to detect M-ary correlation pulses at a fiber-optical delay line matched filter output have been evaluated. Effects of A PIN diode NEP, the gain and noise figure of the EDFA, and the bandwidth of an optical filter on the packet error rate of the switching node have been compared. There is negligible error rate change depending upon the variation of the PIN diode NEP and the EDFA gain. If the bandwidth of the optical filter is below 10 times of the data rate, there is no appreciable effect on the error rate. If the noise figure of the EDFA increases, however, the power penalty increases as much as the noise figure increment at all the bit rates and for address code sets considered in this work.

  • PDF