DOI QR코드

DOI QR Code

Application of the SCIANTIX fission gas behaviour module to the integral pin performance in sodium fast reactor irradiation conditions

  • Magni, A. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Pizzocri, D. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Luzzi, L. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Lainet, M. (Commissariat a l'Energie Atomique et aux Energies Alternatives, CEA DEC/SESC) ;
  • Michel, B. (Commissariat a l'Energie Atomique et aux Energies Alternatives, CEA DEC/SESC)
  • Received : 2021.10.12
  • Accepted : 2022.02.04
  • Published : 2022.07.25

Abstract

The sodium-cooled fast reactor is among the innovative nuclear technologies selected in the framework of the development of Generation IV concepts, allowing the irradiation of uranium-plutonium mixed oxide fuels (MOX). A fundamental step for the safety assessment of MOX-fuelled pins for fast reactor applications is the evaluation, by means of fuel performance codes, of the integral thermal-mechanical behaviour under irradiation, involving the fission gas behaviour and release in the fuel-cladding gap. This work is dedicated to the performance analysis of an inner-core fuel pin representative of the ASTRID sodium-cooled concept design, selected as case study for the benchmark between the GERMINAL and TRANSURANUS fuel performance codes. The focus is on fission gas-related mechanisms and integral outcomes as predicted by means of the SCIANTIX module (allowing the physics-based treatment of inert gas behaviour and release) coupled to both fuel performance codes. The benchmark activity involves the application of both GERMINAL and TRANSURANUS in their "pre-INSPYRE" versions, i.e., adopting the state-of-the-art recommended correlations available in the codes, compared with the "post-INSPYRE" code results, obtained by implementing novel models for MOX fuel properties and phenomena (SCIANTIX included) developed in the framework of the INSPYRE H2020 Project. The SCIANTIX modelling includes the consideration of burst releases of the fission gas stored at the grain boundaries occurring during power transients of shutdown and start-up, whose effect on a fast reactor fuel concept is analysed. A clear need to further extend and validate the SCIANTIX module for application to fast reactor MOX emerges from this work; nevertheless, the GERMINAL-TRANSURANUS benchmark on the ASTRID case study highlights the achieved code capabilities for fast reactor conditions and paves the way towards the proper application of fuel performance codes to safety evaluations on Generation IV reactor concepts.

Keywords

Acknowledgement

This work has received funding from the Euratom research and training programme 2014-2018 through the INSPYRE project under grant agreement No 754329.

References

  1. GIF (Generation IV International Forum), GIF R&D Outlook for Generation IV Nuclear Energy Systems - 2018 Update, 2018.
  2. GIF (Generation IV International Forum), Annual Report 2020, 2020.
  3. T. Beck, V. Blanc, J.-M. Escleine, D. Haubensack, M. Pelletier, M. Phelip, B. Perrin, C. Venard, Conceptual design of ASTRID fuel sub-assemblies, Nucl. Eng. Des. 315 (2017) 51-60. https://doi.org/10.1016/j.nucengdes.2017.02.027
  4. C. Venard, C. Coquelet-Pascal, A. Conti, D. Gentet, P. Lamagnere, R. Lavastre, P. Gauthe, B. Bernardin, T. Beck, D. Lorenzo, A.-C. Scholer, B. Perrin, D. Verrier, in: The ASTRID Core at the End of the Conceptual Design Phase, FR17, 2017, 26-29 June, Yekaterinburg, Russia.
  5. M. Lainet, B. Michel, J.C. Dumas, M. Pelletier, I. Ramiere, GERMINAL, a fuel performance code of the PLEIADES platform to simulate the in-pile behaviour of mixed oxide fuel pins for sodium-cooled fast reactors, J. Nucl. Mater. 516 (2019) 30-53. https://doi.org/10.1016/j.jnucmat.2018.12.030
  6. B. Michel, I. Ramiere, I. Viallard, C. Introini, M. Lainet, N. Chauvin, V. Marelle, A. Boulore, T. Helfer, R. Masson, J. Sercombe, J.C. Dumas, L. Noirot, S. Bernaud, Two fuel performance codes of the PLEIADES platform: ALCYONE and GERMINAL, in: J. Wang, X. Li, C. Allison, J. Hohorst (Eds.), Nuclear Power Plant Design and Analysis Codes - Development, Validation and Application Chap. 9, Woodhead Publishing Series in Energy, Elsevier, 2021, pp. 207-233.
  7. K. Lassmann, TRANSURANUS: a fuel rod analysis code ready for use, J. Nucl. Mater. 188 (C) (1992) 295-302. https://doi.org/10.1016/0022-3115(92)90487-6
  8. A. Magni, A. Del Nevo, L. Luzzi, D. Rozzia, M. Adorni, A. Schubert, P. Van Uffelen, The TRANSURANUS fuel performance code, in: J. Wang, X. Li, C. Allison, J. Hohorst (Eds.), Nuclear Power Plant Design and Analysis Codes - Development, Validation and Application Chap. 8, Woodhead Publishing Series in Energy, Elsevier, 2021, pp. 161-205.
  9. D. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, California University, Department of Nuclear Engineering, Berkeley, CA, USA, 1976.
  10. D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX: a new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes, J. Nucl. Mater. 532 (2020), 152042. https://doi.org/10.1016/j.jnucmat.2020.152042
  11. P. Van Uffelen, A. Schubert, L. Luzzi, T. Barani, A. Magni, D. Pizzocri, M. Lainet, V. Marelle, B. Michel, B. Boer, S. Lemehov, A. Del Nevo, Incorporation and verification of models and properties in fuel performance codes, INSPYRE Deliverable D7.2 (2020).
  12. P. Le Coz, J.F. Sauvage, J.P. Serpantie, Sodium-cooled fast reactors: the ASTRID plant project1, in: Proceedings of ICAPP 201, 2011.
  13. B. Faure, P. Archier, J.-F. Vidal, J.M. Palau, L. Buiron, Neutronic calculation of an axially heterogeneous ASTRID fuel assembly with APOLLO3®: analysis of biases and foreseen improvements, Ann. Nucl. Energy 115 (2018) 88-104. https://doi.org/10.1016/j.anucene.2017.12.035
  14. C. Venard, T. Beck, B. Bernardin, A. Conti, D. Gentet, P. Lamagnere, P. Sciora, D. Lorenzo, A. Tosello, M. Vanier, A.-C. Scholer, D. Verrier, F. Barjot, D. Schmitt, The ASTRID core at the midterm of the conceptual design phase (AVP2), in: ICAPP 2015 - International Congress on Advances in Nuclear Power Plants, 3-5 May 2015, Nice, France, 2015.
  15. EERA-JPNM, INSPYRE - Investigations Supporting MOX Fuel Licensing in ESNII Prototype Reactors [Online]. Available: http://www.eera-jpnm.eu/inspyre/, 2017.
  16. L. Luzzi, T. Barani, A. Magni, D. Pizzocri, A. Schubert, P. Van Uffelen, V. Marelle, B. Michel, B. Boer, S. Lemehov, A. Del Nevo, Definition of Detailed Configurations of the Case Studies for the Fuel Performance Simulations in Task 7.3, INSPYRE Milestone MS16, 2019.
  17. T. Barani, E. Bruschi, D. Pizzocri, G. Pastore, P. Van Uffelen, R.L. Williamson, L. Luzzi, Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS, J. Nucl. Mater. 486 (2017) 96-110. https://doi.org/10.1016/j.jnucmat.2016.10.051
  18. M. Pelletier, Y. Guerin, Fuel Performance of Fast Spectrum Oxide Fuel, in: Chap. 2.03, in: R.J.M. Konings, R.E. Stoller (Eds.), Comprehensive Nuclear Materials, 2, Elsevier, 2020, pp. 72-105.
  19. D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX Code [Online]. Available: https://gitlab.com/poliminrg/sciantix, 2020.
  20. D. Pizzocri, G. Pastore, T. Barani, A. Magni, L. Luzzi, P. Van Uffelen, S.A. Pitts, A. Alfonsi, J.D. Hales, A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools, J. Nucl. Mater. 502 (2018) 323-330. https://doi.org/10.1016/j.jnucmat.2018.02.024
  21. G. Pastore, L. Luzzi, V. Di Marcello, P. Van Uffelen, Physics-based modelling of fission gas swelling and release in UO2 applied to integral fuel rod analysis, Nucl. Eng. Des. 256 (2013) 75-86. https://doi.org/10.1016/j.nucengdes.2012.12.002
  22. L. Cognini, A. Cechet, T. Barani, D. Pizzocri, P. Van Uffelen, L. Luzzi, Towards a physics-based description of intra-granular helium behaviour in oxide fuel for application in fuel performance codes, Nucl. Eng. Technol. 53 (2) (2021) 562-571. https://doi.org/10.1016/j.net.2020.07.009
  23. A. Cechet, S. Altieri, T. Barani, L. Cognini, S. Lorenzi, A. Magni, D. Pizzocri, L. Luzzi, A new burn-up module for application in fuel performance calculations targeting the helium production rate in (U,Pu)O2 for fast reactors, Nucl. Eng. Technol. 53 (6) (2021) 1893-1908. https://doi.org/10.1016/j.net.2020.12.001
  24. A. Scolaro, I. Clifford, C. Fiorina, A. Pautz, The OFFBEAT multi-dimensional fuel behavior solver, Nucl. Eng. Des. 358 (2020), 110416. https://doi.org/10.1016/j.nucengdes.2019.110416
  25. A. Scolaro, Development of a Novel Finite Volume Methodology for Multi-Dimensional Fuel Performance Applications,, PhD Thesis,, EPFL, Switzerland, 2021.
  26. C. Sari, Grain growth kinetics in uranium-plutonium mixed oxides, J. Nucl. Mater. 137 (2) (1986) 100-106. https://doi.org/10.1016/0022-3115(86)90038-3
  27. J.B. Ainscough, B.W. Oldfield, J.O. Ware, Isothermal grain growth kinetics in sintered UO2 pellets, J. Nucl. Mater. 49 (2) (1973) 117-128. https://doi.org/10.1016/0022-3115(73)90001-9
  28. P. Botazzoli, Helium Production and Behaviour in LWR Oxide Nuclear Fuels, PhD Thesis,, Politecnico di Milano, Italy, 2011.
  29. P. Botazzoli, L. Luzzi, S. Bremier, A. Schubert, P. Van Uffelen, Microstructural evolution in heterogeneous and homogeneous MOX fuels, in: NuMat 2010 - the Nuclear Materials Conference, 2010, 4-7 October, Karlsruhe, Germany.
  30. F. Verdolin, S. Novascone, D. Pizzocri, G. Pastore, T. Barani, L. Luzzi, Modelling fission gas behaviour in fast reactor (U,Pu)O2 fuel with BISON, J. Nucl. Mater. 547 (2021), 152728. https://doi.org/10.1016/j.jnucmat.2020.152728
  31. G. Pastore, D. Pizzocri, C. Rabiti, T. Barani, P. Van Uffelen, L. Luzzi, An effective numerical algorithm for intra-granular fission gas release during non-equilibrium trapping and resolution, J. Nucl. Mater. 509 (2018) 687-699. https://doi.org/10.1016/j.jnucmat.2018.07.030
  32. M.S. Veshchunov, V.D. Ozrin, V.E. Shestak, V.I. Tarasov, R. Dubourg, G. Nicaise, Development of the mechanistic code MFPR for modelling fission-product release from irradiated UO2 fuel, Nucl. Eng. Des. 236 (2) (2006) 179-200. https://doi.org/10.1016/j.nucengdes.2005.08.006
  33. M.S. Veshchunov, V.I. Tarasov, Modelling of irradiated UO2 fuel behaviour under transient conditions, J. Nucl. Mater. 437 (1-3) (2013) 250-260. https://doi.org/10.1016/j.jnucmat.2013.02.011
  34. M.V. Speight, A calculation on the migration of fission gas in material exhibiting precipitation and Re-solution of gas atoms under irradiation, Nucl. Sci. Eng. 37 (1969) 180-185. https://doi.org/10.13182/NSE69-A20676
  35. J.A. Turnbull, The distribution of intragranular fission gas bubbles in UO2 during irradation, J. Nucl. Mater. 38 (2) (1971) 203-212. https://doi.org/10.1016/0022-3115(71)90044-4
  36. D. Pizzocri, T. Barani, L. Cognini, L. Luzzi, A. Magni, A. Schubert, P. Van Uffelen, T. Wiss, Synthesis of the inert gas behaviour models developed in INSPYRE, INSPYRE Deliverable D6.4 (2020).
  37. S. Lemehov, New correlations of thermal expansion and Young's modulus based on existing literature and new data, INSPYRE Deliverable D6.3 (2020).
  38. A. Magni, T. Barani, A. Del Nevo, D. Pizzocri, D. Staicu, P. Van Uffelen, L. Luzzi, Modelling and assessment of thermal conductivity and melting behaviour of MOX fuel for fast reactor applications, J. Nucl. Mater. 541 (2020), 152410. https://doi.org/10.1016/j.jnucmat.2020.152410
  39. A. Magni, L. Luzzi, P. Van Uffelen, D. Staicu, P. Console Camprini, P. Del Prete, A. Del Nevo, Report on the improved models of melting temperature and thermal conductivity for MOX fuels and JOG, INSPYRE Deliverable D6.2 version 2 (2020).
  40. Y. Philipponneau, Thermal conductivity of (U, Pu)O2-x mixed oxide fuel, J. Nucl. Mater. 188 (1992) 194-197. https://doi.org/10.1016/0022-3115(92)90470-6
  41. L. Luzzi, T. Barani, B. Boer, L. Cognini, A. Del Nevo, M. Lainet, S. Lemehov, A. Magni, V. Marelle, B. Michel, D. Pizzocri, A. Schubert, P. Van Uffelen, M. Bertolus, Assessment of three European fuel performance codes against the SUPERFACT-1 fast reactor irradiation experiment, Nucl. Eng. Technol. 53 (2021) 3367-3378. https://doi.org/10.1016/j.net.2021.04.010
  42. B. Boer, J. Eysermans, S. Lemehov, L. Luzzi, T. Barani, L. Cognini, A. Magni, D. Pizzocri, A. Del Nevo, A. Schubert, P. Van Uffelen, M. Bertolus, M. Lainet, V. Marelle, B. Michel, Report describing the results of the benchmark between improved codes and previous versions on selected experimental cases, INSPYRE Deliverable D7.3 (2021).
  43. P. Van Uffelen, P. Botazzoli, L. Luzzi, S. Bremier, A. Schubert, P. Raison, R. Eloirdi, M.A. Barker, An experimental study of grain growth in mixed oxide samples with various microstructures and plutonium concentration, J. Nucl. Mater. 434 (1-3) (2013) 287-290. https://doi.org/10.1016/j.jnucmat.2012.11.053
  44. W. Dienst, I. Muelle-Lyda, H. Zimmermann, Swelling, densification and creep of oxide and carbide fuels under irradiation, in: International Conference on Fast Breeder Reactor Performance, 1979, 5-8 March, Monterey, CA, USA.
  45. L. Luzzi, A. Cammi, V. Di Marcello, S. Lorenzi, D. Pizzocri, P. Van Uffelen, Application of the TRANSURANUS code for the fuel pin design process of the ALFRED reactor, Nucl. Eng. Des. 277 (2014) 173-187. https://doi.org/10.1016/j.nucengdes.2014.06.032
  46. R.L. Williamson, K.A. Gamble, D.M. Perez, S.R. Novascone, G. Pastore, R.J. Gardner, J.D. Hales, W. Liu, A. Mai, Validating the BISON fuel performance code to integral LWR experiments, Nucl. Eng. Des. 301 (2016) 232-244. https://doi.org/10.1016/j.nucengdes.2016.02.020
  47. D. Pizzocri, G. Pastore, T. Barani, E. Bruschi, L. Luzzi, P. Van Uffelen, Modelling of burst release in oxide fuel and application to the transuranus code, in: Proceedings Of the 11th International Conference WWER Fuel Performance, Modelling and Experimental Support, 2015, 28 September - 02 October, Varna, Bulgaria.
  48. G. Pastore, D. Pizzocri, J.D. Hales, S.R. Novascone, D.M. Perez, B.W. Spencer, R.L. Williamson, P. Van Uffelen, Modeling of transient fission gas behavior in oxide fuel and application to the BISON code, in: Proc. of Enlarged Halden Programme Group Meeting, 2015. Roros, Norway.
  49. K. Une, S. Kashibe, Fission gas release during post irradiation annealing of BWR fuels, J. Nucl. Sci. Technol. 27 (11) (1990) 1002-1016. https://doi.org/10.1080/18811248.1990.9731285
  50. F. Cappia, K. Tanaka, M. Kato, K. McClellan, J. Harp, Post-irradiation examinations of annular mixed oxide fuels with average burnup 4 and 5% FIMA, J. Nucl. Mater. 533 (2020), 152076. https://doi.org/10.1016/j.jnucmat.2020.152076
  51. R.J. Parrish, F. Cappia, A. Aitkaliyeva, Comparison of the radial effects of burnup on fast reactor MOX fuel microstructure and solid fission products, J. Nucl. Mater. 531 (2020), 152003. https://doi.org/10.1016/j.jnucmat.2020.152003