• 제목/요약/키워드: PID controllers

검색결과 378건 처리시간 0.021초

Design of optimal PID controller for the reverse osmosis using teacher-learner-based-optimization

  • Rathore, Natwar S.;Singh, V.P.
    • Membrane and Water Treatment
    • /
    • 제9권2호
    • /
    • pp.129-136
    • /
    • 2018
  • In this contribution, the control of multivariable reverse osmosis (RO) desalination plant using proportional-integral-derivative (PID) controllers is presented. First, feed-forward compensators are designed using simplified decoupling method and then the PID controllers are tuned for flux (flow-rate) and conductivity (salinity). The tuning of PID controllers is accomplished by minimization of the integral of squared error (ISE). The ISEs are minimized using a recently proposed algorithm named as teacher-learner-based-optimization (TLBO). TLBO algorithm is used due to being simple and being free from algorithm-specific parameters. A comparative analysis is carried out to prove the supremacy of TLBO algorithm over other state-of-art algorithms like particle swarm optimization (PSO), artificial bee colony (ABC) and differential evolution (DE). The simulation results and comparisons show that the purposed method performs better in terms of performance and can successfully be applied for tuning of PID controllers for RO desalination plants.

Design of Multi-loop PID Controllers Based on the Generalized IMC-PID Method with Mp Criterion

  • Vu Truong Nguyen Luan;Lee Jie-Tae;Lee Moon-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권2호
    • /
    • pp.212-217
    • /
    • 2007
  • A new method of designing multi-loop PID controllers is presented in this paper. By using the generalized IMC-PID method for multi-loop systems, the optimization problem involved in finding the PID parameters is efficiently simplified to find the optimum closed-loop time constant in a reduced search space. A weighted sum Mp criterion is proposed as a performance cost function to cope with both the performance and robustness of a multi-loop control system. Several illustrative examples are included to demonstrate the improved performance of the multi-loop PID controllers obtained by the proposed design method.

온라인 파라미터 추정에 의한 PID 제어기의 동조에 관한 연구 (A study on tuning for PID-controllers based on on-line parameter estimation)

  • 유연운;설남오;김성중;박종국;이창구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1077-1080
    • /
    • 1991
  • It has been recognized as important subject by users that PID-Controllers widely used in industrial processes must be well-tuned, In this paper, We present an automatic tuning method for PID-Controllers which is based on discrete parameter estimation and application of conventional tuning-rules. The method is easy to implement on microprocessor because critical values are obtained by the mathematical computation. Also, it permits quick on-line tuning. Simulation results show that most processes are well tuned by the suggested tuning method in this paper.

  • PDF

Two-Degree-of-Freedom PID Controllers

  • Araki, Mituhiko;Taguchi, Hidefumi
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권4호
    • /
    • pp.401-411
    • /
    • 2003
  • Important results about two-degree-of-freedom PID controllers are surveyed for the tutorial purpose, including equivalent transformations, various explanations about the effect of the two-degree-of-freedom structure, relation to the preceded-derivative PID and the I-PD controllers, and an optimal tuning method.

Design of RCGA-based PID controller for two-input two-output system

  • Lee, Yun-Hyung;Kwon, Seok-Kyung;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권10호
    • /
    • pp.1031-1036
    • /
    • 2015
  • Proportional-integral-derivative (PID) controllers are widely used in industrial sites. Most tuning methods for PID controllers use an empirical and experimental approach; thus, the experience and intuition of a designer greatly affect the tuning of the controller. The representative methods include the closed-loop tuning method of Ziegler-Nichols (Z-N), the C-C tuning method, and the Internal Model Control tuning method. There has been considerable research on the tuning of PID controllers for single-input single-output systems but very little for multi-input multi-output systems. It is more difficult to design PID controllers for multi-input multi-output systems than for single-input single-output systems because there are interactive control loops that affect each other. This paper presents a tuning method for the PID controller for a two-input two-output system. The proposed method uses a real-coded genetic algorithm (RCGA) as an optimization tool, which optimizes the PID controller parameters for minimizing the given objective function. Three types of objective functions are selected for the RCGA, and each PID controller parameter is determined accordingly. The performance of the proposed method is compared with that of the Z-N method, and the validity of the proposed method is examined.

Intelligent Fuzzy PID 제어 알고리즘을 이용한 실시간 OS 기반 복강경 수술 로봇의 위치 제어 성능 강화에 관한 연구 (A Study of Position Control Performance Enhancement in a Real-Time OS Based Laparoscopic Surgery Robot Using Intelligent Fuzzy PID Control Algorithm)

  • 송승준;박준우;신정욱;이덕희;김연호;최재순
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.518-526
    • /
    • 2008
  • The fuzzy self-tuning PID controller is a PID controller with a fuzzy logic mechanism for tuning its gains on-line. In this structure, the proportional, integral and derivative gains are tuned on-line with respect to the change of the output of system under control. This paper deals with two types of fuzzy self-tuning PID controllers, rule-based fuzzy PID controller and learning fuzzy PID controller. As a medical application of fuzzy PID controller, the proposed controllers were implemented and evaluated in a laparoscopic surgery robot system. The proposed fuzzy PID structures maintain similar performance as conventional PID controller, and enhance the position tracking performance over wide range of varying input. For precise approximation, the fuzzy PID controller was realized using the linear reasoning method, a type of product-sum-gravity method. The proposed controllers were compared with conventional PID controller without fuzzy gain tuning and was proved to have better performance in the experiment.

2자유도를 가지는 지적 PID 제어기를 이용한 시스템의 성능향상 (Performance/Robustness Improvement of i-PID with Two-Degree-of-Freedom Controller)

  • 최연욱
    • 전기학회논문지
    • /
    • 제66권6호
    • /
    • pp.927-934
    • /
    • 2017
  • This paper is concerned with applicability of two-degree-of-freedom controllers to the recently suggested i-PID controllers, in which unknown parts of the plant are taken into account without any modeling procedure. First, i-PID controller with two-degree-of-freedom is applied to a specific model, called Anisochronic model, to confirm the usefulness of this method. Second, using the original examples of i-PID controllers, it is confirmed that performance/robustness of system are to be improved due to two-degree-of-freedom, especially when the input changes suddenly. It is seen that as the desired robustness increases the optimal value of two-degree-of-freedom parameter ${\alpha}_A$ would be negative. It is checked and verified that if this value was limited to 1 or less as is generally known, performance would be degraded.

Design of Sliding Mode Controller with Auto-tuning Method

  • He, Wei;Zhai, Yujia
    • 한국융합학회논문지
    • /
    • 제4권2호
    • /
    • pp.43-50
    • /
    • 2013
  • Sliding mode control(SMC) are carried out in this literature. And to make the controllers perform better, fuzzy logic was chosen,it makes PID controller auto-tuning parameters and reduced the chattering problem of sliding mode control. Since SMC take error and derivative of error as inputs, after comparison some results are obtained.PID controller response faster yet sliding mode control is much steadier. However certain problems cannot be ignored that the chattering phenomenal cannot be reduced entirely and this motion may hurt the machine; this project only considered a simple system, there is no guarantee PID can work as well as in this case for a much more complex system. MATLAB simulink was the main approach to obtain the performance of the two controllers: to observe the control output of the two controllers, electric circuit and special controllers are designed and tested in MATLAB.

PID출력귀환 제어기의 변수조정에 관한 연구 (A study on the Parameter Regulation of PID Output Feedback Controllers)

  • 성원기;최종수;하용수
    • 한국통신학회논문지
    • /
    • 제10권4호
    • /
    • pp.184-192
    • /
    • 1985
  • 三項出力歸還 制御器의 파라미터調整을 컴퓨터模擬實驗에 의해 時間領域解析과 最適値를 活用할 수 있게 하였다. 正常狀態應答, 外亂無視, 過渡應答遂行을 效率的으로 選擇될 수 있는 PID制御器의 設計를 汎用例에 의하여 考察하였다. 이에 의해 sensor base system構成圖를 또한 提示한다.

  • PDF

DIDF를 이용한 PID제어기의 성능향상에 관한 연구 (Performance Improvement for PID Controllers by using Dual-Input Describing Function (DIDF) Method)

  • 최연욱
    • 전기학회논문지
    • /
    • 제60권9호
    • /
    • pp.1741-1747
    • /
    • 2011
  • Though various techniques have been studied as a way of adjusting parameters of PID controllers, no perfect method of determining parameters is available to date. This paper proposes a new method for enhancing performance of PID controllers by using the characteristics of dual-input describing function (DIDF). In other words, if nonlinear elements with two inputs (DIDF) are connected in series to the plant, the critical point (-1+j0) for Nyquist stability theory can be moved to a position arbitrarily selected on the complex plane by determining necessary coefficients of the DIDF appropriately. This makes the application of the existing conventional PID parameter tuning methods a lot easier, and stability and robustness of the system are improved simultaneously due to the DIDF inserted.