• 제목/요약/키워드: PID (proportional-Integral-Derivative)

검색결과 178건 처리시간 0.032초

스텝응답에 기반한 PID/PIDA 제어기의 자동동조 (Auto-tuning of PID/PIDA Controllers based on Step-response)

  • 안경필;이준성;임재식;이영일
    • 제어로봇시스템학회논문지
    • /
    • 제15권10호
    • /
    • pp.974-981
    • /
    • 2009
  • In this paper, a method of auto-tuning of PID (Proportional-Integral-Derivative) and PIDA (Proportional-Integral-Derivative-Acceleration) controllers is proposed that can be applied to a time-delayed second order model. The proposed identification method is based on step responses, but it can be easily automated rising digital controller unlike the existing graphical identification methods. We provide a ways to yield parameter identifications which is independent to initial values of the plants. The tuning rule is based on the pole-placement strategy and is formulated so that it can be implemented using a digital controller with ease.

Control of the pressurized water nuclear reactors power using optimized proportional-integral-derivative controller with particle swarm optimization algorithm

  • Mousakazemi, Seyed Mohammad Hossein;Ayoobian, Navid;Ansarifar, Gholam Reza
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.877-885
    • /
    • 2018
  • Various controllers such as proportional-integral-derivative (PID) controllers have been designed and optimized for load-following issues in nuclear reactors. To achieve high performance, gain tuning is of great importance in PID controllers. In this work, gains of a PID controller are optimized for power-level control of a typical pressurized water reactor using particle swarm optimization (PSO) algorithm. The point kinetic is used as a reactor power model. In PSO, the objective (cost) function defined by decision variables including overshoot, settling time, and stabilization time (stability condition) must be minimized (optimized). Stability condition is guaranteed by Lyapunov synthesis. The simulation results demonstrated good stability and high performance of the closed-loop PSO-PID controller to response power demand.

MRPID 제어기의 튜닝 방법연구 (A Study on the MRPID parameter tuning method)

  • 류현준
    • 전자공학회논문지SC
    • /
    • 제44권6호
    • /
    • pp.21-28
    • /
    • 2007
  • Mutiresolution proportional-integral-derivative(MRPID) 제어기는 웨이브렛 기반의 다해상도 응답을 이용해서 에러 신호에 포함되어 있는 잡음과 외란을 제거하는 필터 역할을 해준다. 다해상도 응답의 특징상 샘플링 주파수가 높을 경우 상대적으로 고주파성분이 남아있음으로 인해 응답속도가 떨어지는 대신에 오버슈트가 제거되고, 낮을 경우 신호 성분이 제거되므로 인해 응답속도가 향상되지만 오버슈트가 증가 되는 결과를 보였다. 본 논문에서는 proportional-integral-derivative(PID) 제어기와 MRPID 제어기의 응답을 이용한 샘플링 주파수를 설정하는 기법과, MRPID 제어기의 특성을 고려한 파라미터 설정기법을 제안한다. 모의실험을 통해서 제안된 기법의 타당성을 검증하였다.

Hybrid GA-PID WAVENET 제어기를 이용한 모형 헬리콥터 시스템의 자세 제어 (Attitude Control of Helicopter Simulator System using A Hybrid GA-PID WAVENET Controller)

  • 박두환;지석준;이준탁
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권6호
    • /
    • pp.433-439
    • /
    • 2004
  • The Helicopter Simulator System is non-linear and complex. Futhermore, because of absence of its accurate mathematical model, it is difficult to control accurately its attitudes such as elevation angle and azimuth one. Therefore, we proposed a Hybrid GA-PID WAVENET(Genetic Algorithm Proportional Integral Derivative Wavelet Neural Network)control technique to control efficiently these angles. The proposed Hybrid GA-PID WAVENET is made through the following process. First, the WAVENET fundamental functions are defined. And their dilation and translation values are adjusted by GA to construct the optimal WAVENET controller. Secondly, the proportional, integral, and derivative gain coefficients of PR controller are tuned optimally. Finally, WAVENET controller which has a good transient characteristic and GA-PE controller which has a good steady state characteristic is adequately combined in hybrid type. Through the computer simulations, it is proved that the Hybrid GA-PE WAVENET control technique has a more excellent dynamic response than PID control technique and GA-PID one.

PID 제어를 통한 쿼드콥터 다중목적 근사최적설계 (Approximate Multi-Objective Optimization of a Quadcopter through Proportional-Integral-Derivative Control)

  • 윤재현;이종수
    • 대한기계학회논문집A
    • /
    • 제39권7호
    • /
    • pp.673-679
    • /
    • 2015
  • 본 연구는 비지배 분류 유전알고리즘(NSGA-II)을 이용하여 흐트러진 쿼드콥터의 자세를 빠르게 회복 할 수 있는 최적화된 PID(Proportional-Integral-Derivative) 이득 값을 얻고자 하였다. PID 제어에 앞서 로터가 4 개로 이루어진 쿼드콥터의 간격을 전산유체해석을 통해 정의하였으며, 정의된 쿼드콥터 모델을 통하여 PID 제어 알고리즘을 생성하였다. 반응표면 모델을 생성하기 위해 실험계획법의 하나인 D-최적계획법 이용하여 실험점을 배치 시킨 후 반응표면모델을 생성하였다. Roll 과 Altitude 의 두 값을 동시에 만족할 수 있는 PID 의 이득 값을 NSGA-II 를 통해 쿼드콥터의 최단 시간의 자세제어를 할 수 있는 최적의 이득 값을 얻을 수 있었다.

Control of a pressurized light-water nuclear reactor two-point kinetics model with the performance index-oriented PSO

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2556-2563
    • /
    • 2021
  • Metaheuristic algorithms can work well in solving or optimizing problems, especially those that require approximation or do not have a good analytical solution. Particle swarm optimization (PSO) is one of these algorithms. The response quality of these algorithms depends on the objective function and its regulated parameters. The nonlinear nature of the pressurized light-water nuclear reactor (PWR) dynamics is a significant target for PSO. The two-point kinetics model of this type of reactor is used because of fission products properties. The proportional-integral-derivative (PID) controller is intended to control the power level of the PWR at a short-time transient. The absolute error (IAE), integral of square error (ISE), integral of time-absolute error (ITAE), and integral of time-square error (ITSE) objective functions have been used as performance indexes to tune the PID gains with PSO. The optimization results with each of them are evaluated with the number of function evaluations (NFE). All performance indexes achieve good results with differences in the rate of over/under-shoot or convergence rate of the cost function, in the desired time domain.

Effect of feedback on PID controlled active structures under earthquake excitations

  • Nigdeli, Sinan Melih
    • Earthquakes and Structures
    • /
    • 제6권2호
    • /
    • pp.217-235
    • /
    • 2014
  • In this paper, different feedback control strategies are presented for active seismic control using proportional-integral-derivative (PID) type controllers. The parameters of PID controller are found by using an numerical algorithm considering time delay, maximum allowed control force and time domain analyses of shear buildings under different earthquake excitations. The numerical algorithm scans combinations of different controller parameters such as proportional gain ($K_p$), integral time ($T_i$) and derivative time ($T_d$) in order to minimize a defined response of the structure. The controllers for displacement, velocity and acceleration feedback control strategies are tuned for structures with active control at the first story and all stories. The performance and robustness of different feedback controls on time and frequency responses of structures are evaluated. All feedback controls are generally robust for the changing properties of the structure, but acceleration feedback control is the best one for efficiency and stability of control system.

A Fuzzy Self-Tuning PID Controller with a Derivative Filter for Power Control in Induction Heating Systems

  • Chakrabarti, Arijit;Chakraborty, Avijit;Sadhu, Pradip Kumar
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1577-1586
    • /
    • 2017
  • The Proportional-Integral-Derivative (PID) controller is still the most widespread control strategy in the industry. PID controllers have gained popularity due to their simplicity, better control performance and excellent robustness to uncertainties. This paper presents the optimal tuning of a PID controller for domestic induction heating systems with a series resonant inverter for controlling the induction heating power. The objective is to design a stable and superior control system by tuning the PID controller with a derivative filter (PIDF) through Fuzzy logic. The paper also compares the performance of the Fuzzy PIDF controller with that of a Ziegler-Nichols PID controller and a fine-tuned PID controller with a derivative filter. The system modeling and controllers are simulated in MATLAB/SIMULINK. The results obtained show the effectiveness and superiority of the proposed Fuzzy PID controller with a derivative filter.

Hardware-Based Implementation of a PIDR Controller for Single-Phase Power Factor Correction

  • Le, Dinh Vuong;Park, Sang-Min;Yu, In-Keun;Park, Minwon
    • 한국산업정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.21-30
    • /
    • 2016
  • In a single-phase power factor correction (PFC), the standard cascaded control algorithm using a proportional-integral-derivative (PID) controller has two main drawbacks: an inability to track sinusoidal current reference and low harmonic compensation capability. These drawbacks cause poor power factor and high harmonics in grid current. To improve these drawbacks, this paper uses a proportional-integral-derivative-resonant (PIDR) controller which combines a type-III PID with proportional-resonant (PR) controllers in the PFC. Based on a small signal model of the PFC, the type-III PID controller was implemented taking into account the bandwidth and phase margin of the PFC system. To adopt the PR controllers, the spectrum of inductor current of the PFC was analyzed in frequency domain. The hybrid PIDR controller were simulated using PSCAD/EMTDC and implemented on a 3 kW PFC prototype hardware. The performance results of the hybrid PIDR controller were compared with those of an individual type-III PID controller. Both controllers were implemented successfully in the single-phase PFC. The total harmonic distortion of the proposed controller were much better than those of the individual type-III PID controller.

Design of RCGA-based PID controller for two-input two-output system

  • Lee, Yun-Hyung;Kwon, Seok-Kyung;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권10호
    • /
    • pp.1031-1036
    • /
    • 2015
  • Proportional-integral-derivative (PID) controllers are widely used in industrial sites. Most tuning methods for PID controllers use an empirical and experimental approach; thus, the experience and intuition of a designer greatly affect the tuning of the controller. The representative methods include the closed-loop tuning method of Ziegler-Nichols (Z-N), the C-C tuning method, and the Internal Model Control tuning method. There has been considerable research on the tuning of PID controllers for single-input single-output systems but very little for multi-input multi-output systems. It is more difficult to design PID controllers for multi-input multi-output systems than for single-input single-output systems because there are interactive control loops that affect each other. This paper presents a tuning method for the PID controller for a two-input two-output system. The proposed method uses a real-coded genetic algorithm (RCGA) as an optimization tool, which optimizes the PID controller parameters for minimizing the given objective function. Three types of objective functions are selected for the RCGA, and each PID controller parameter is determined accordingly. The performance of the proposed method is compared with that of the Z-N method, and the validity of the proposed method is examined.