• Title/Summary/Keyword: PI3K/Akt pathway

Search Result 264, Processing Time 0.031 seconds

Facilitation of Glucose Uptake by Lupeol through the Activation of the PI3K/AKT and AMPK Dependent Pathways in 3T3-L1 Adipocytes (3T3-L1 지방세포에서 PI3K/AKT 및 AMPK 경로의 활성화를 통한 루페올의 포도당 흡수촉진 효과)

  • Lee, Hyun-Ah;Han, Ji-Sook
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.86-93
    • /
    • 2022
  • Lupeol is a type of pentacyclic triterpene and has been reported to have pharmacological activities against various diseases; however, the effect of lupeol on glucose absorption has not been elucidated yet. This study aimed to investigate the effect of lupeol on glucose uptake in 3T3-L1 adipocytes. Lupeol significantly facilitated glucose uptake by translocating glucose transporter type 4 (GLUT4) to the plasma membrane of the 3T3-L1 adipocytes, which was related to activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and 5 'adenosine monophosphate-activated protein kinase (AMPK) pathways. In the PI3K/AKT pathway, lupeol stimulates the phosphorylation of insulin receptor substrate 1 (IRS-1), which activates PI3K. Its activation by lupeol promotes the phosphorylation of AKT, but not the atypical protein kinase C isoforms ζ and λ. Lupeol also promoted the phosphorylation of AMPK. The activation of AMPK increased the expressions of the plasma membrane GLUT4 and the intracellular glucose uptake. The increase in the glucose uptake by lupeol was suppressed by wortmannin (PI3K inhibitor) and compound C (AMPK inhibitor) in the 3T3-L1 adipocytes. The results indicate that lupeol can facilitate glucose uptake by increasing insulin sensitivity through the stimulation of the expression of plasma membrane glucose transporter type 4 via the PI3K/AKT and AMPK pathways in the 3T3-L1 adipocytes.

The Heterochromatin-1 Phosphorylation Contributes to TPA-Induced AP-1 Expression

  • Choi, Won Jun
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.308-313
    • /
    • 2014
  • Activator protein-1 (AP-1) is an inducible transcription factor that contributes to the generation of chronic inflammation in response to oxidative and electrophilic stress. Previous studies have demonstrated that the PI3K/Akt1 pathway plays an important role in the transcriptional regulation of AP-1 expression. Although the histone post-translational modifications (PTMs) are assumed to affect the AP-1 transcriptional regulation by the PI3K/Akt pathway, the detailed mechanisms are completely unknown. In the present study, we show that heterochromatin 1 gamma ($HP1{\gamma}$) plays a negative role in TPA-induced c-Jun and c-Fos expression. We show that TPA-induced Akt1 directly phosphorylates $HP1{\gamma}$, abrogates its suppressive function and increases the interaction between histone H3 and 14-3-$3{\varepsilon}$. Collectively, these our data illustrate that the activation of PI3K/Akt pathway may play a permissive role in the recruitment of histone readers or other coactivators on the chromatin, thereby affecting the degree of AP-1 transcription.

Genetic Variants in the PI3K/PTEN/AKT/mTOR Pathway Predict Platinum-based Chemotherapy Response of Advanced Non-small Cell Lung Cancers in a Chinese Population

  • Xu, Jia-Li;Wang, Zhen-Wu;Hu, Ling-Min;Yin, Zhi-Qiang;Huang, Ming-De;Hu, Zhi-Bin;Shen, Hong-Bing;Shu, Yong-Qian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2157-2162
    • /
    • 2012
  • Objective: The PI3K/PTEN/AKT/mTOR signaling pathway has been implicated in resistance to cisplatin. In the current study, we determined whether common genetic variations in this pathway are associated with platinum-based chemotherapy response and clinical outcome in advanced non-small cell lung cancer (NSCLC) patients. Methods: Seven common single nucleotide polymorphisms (SNPs) in core genes of this pathway were genotyped in 199 patients and analyzed for associations with chemotherapy response, progression-free survival (PFS) and overall survival (OS). Results: Logistic regression analysis revealed an association between AKT1 rs2494752 and response to treatment. Patients carrying heterozygous AG had an increased risk of disease progression after two cycles of platinum-based chemotherapy compared to those with AA genotype (Adjusted odds ratio (OR)=2.18, 95% confidence interval (CI): 1.00-4.77, which remained significant in the stratified analyses). However, log-rank test and cox regression detected no association between these polymorphisms in the PI3K pathway genes and survival in advanced NSCLC patients. Conclusions: Our findings suggest that genetic variants in the PI3K/PTEN/AKT/mTOR pathway may predict platinum-based chemotherapy response in advanced NSCLC patients in a Chinese population.

Dihydroaustrasulfone alcohol induces apoptosis in nasopharyngeal cancer cells by inducing reactive oxygen species-dependent inactivation of the PI3K/AKT pathway

  • Kok-Tong Tan;Yu-Hung Shih;Jiny Yin Gong;Xiang Zhang;Chiung-Yao Huang;Jui-Hsin Su;Jyh-Horng Sheu;Chi-Chen Lin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.383-398
    • /
    • 2023
  • Dihydroaustrasulfone alcohol (DA), the synthetic precursor of a natural compound (austrasulfone) isolated from the coral species Cladiella australis, has shown cytotoxic effects against cancer cells. However, it is unknown whether DA has antitumor effects on nasopharyngeal carcinoma (NPC). In this study, we determined the antitumor effects of DA and investigated its mechanism of action on human NPC cells. The MTT assay was used to determine the cytotoxic effect of DA. Subsequently, apoptosis and reactive oxygen species (ROS) analyses were performed by using flow cytometry. Apoptotic and PI3K/AKT pathway-related protein expression was determined using Western blotting. We found that DA significantly reduced the viability of NPC-39 cells and determined that apoptosis was involved in DA-induced cell death. The activity of caspase-9, caspase-8, caspase-3, and PARP induced by DA suggested caspase-mediated apoptosis in DA-treated NPC-39 cells. Apoptosis-associated proteins (DR4, DR5, FAS) in extrinsic pathways were also elevated by DA. The enhanced expression of proapoptotic Bax and decreased expression of antiapoptotic BCL-2 suggested that DA mediated mitochondrial apoptosis. DA reduced the expression of pPI3K and p-AKT in NPC-39 cells. DA also reduced apoptosis after introducing an active AKT cDNA, indicating that DA could block the PI3K/AKT pathway from being activated. DA increased intracellular ROS, but N-acetylcysteine (NAC), a ROS scavenger, reduced DA-induced cytotoxicity. NAC also reversed the chances in pPI3K/AKT expression and reduced DA-induced apoptosis. These findings suggest that ROS-mediates DA-induced apoptosis and PI3K/AKT signaling inactivation in human NPC cells.

Role of PI3K/Akt Pathway in the Activation of IκB/NF-κB Pathway in Lung Epithelial Cells (폐 상피세포에서 PI3K/Akt 경로가 IκB/NF-κB 경로의 활성화에 미치는 영향)

  • Lee, Sang-Min;Kim, Yoon Kyung;Hwang, Yoon-Ha;Lee, Chang-Hoon;Lee, Hee-Seok;Lee, Choon-Taek;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.5
    • /
    • pp.551-562
    • /
    • 2003
  • Background : NF-${\kappa}B$ is a characteristic transcriptional factor which has been shown to regulate production of acute inflammatory mediators and to be involved in the pathogenesis of many inflammatory lung diseases. There has been some evidence that PI3K/Akt pathway could activate NF-${\kappa}B$ in human cell lines. However, the effect of PI3K/Akt pathway on the activation of NF-${\kappa}B$ varied depending on the cell lines used in the experiments. In this study we evaluated the effect of PI3K/Akt pathway on the activation of NF-${\kappa}B$ in human respiratory epithelial cell lines. Methods : BEAS-2B, A549 and NCI-H157 cell lines were used in this experiment. To evaluate the activation of Akt activation and I${\kappa}B$ degradation, cells were analysed by western blot assay using phospho-specific Akt Ab and $I{\kappa}B$ Ab. To block PI3K/Akt pathway, cells were pretreated with wortmannin or LY294002 and transfected with dominant negative Akt (DN-Akt). For IKK activity, immune complex kinase assay was performed. To evaluate the DNA binding affinity and transcriptional activity of NF-${\kappa}B$, electrophoretic mobility shift assay (EMSA) and luciferase assay were performed, respectively. Results : In BEAS-2B, A549 and NCI-H157 cell lines, Akt was activated by TNF-$\alpha$ and insulin. Activation of Akt by insulin did not induce $I{\kappa}B{\alpha}$ degradation. Blocking of PI3K/Akt pathway via wortmannin/LY294002 or DN-Akt did not inhibit TNF-$\alpha$-induced $I{\kappa}B{\alpha}$ degradation or IKK activation. Inhibition of PI3K/Akt did not affect TNF-$\alpha$-induced NF-${\kappa}B$ activation. Overexpression of DN-Akt did not block TNF-$\alpha$-induced transcriptional activation of NF-${\kappa}B$, but wortmannin enhanced TNF-$\alpha$-induced in NF-${\kappa}B$ transcriptional activity. Conclusion : PI3K/Akt was not involved in TNF-$\alpha$-induced $I{\kappa}B{\alpha}$ degradation or transcriptional activity of NF-${\kappa}B$ in human respiratory epithelial cell lines.

Inhibition of the interaction between Hippo/YAP and Akt signaling with ursolic acid and 3'3-diindolylmethane suppresses esophageal cancer tumorigenesis

  • Ruo Yu Meng;Cong Shan Li;Dan Hu;Soon-Gu Kwon;Hua Jin;Ok Hee Chai;Ju-Seog Lee;Soo Mi Kim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.5
    • /
    • pp.493-511
    • /
    • 2023
  • Hippo/YAP signaling hinders cancer progression. Inactivation of this pathway contributes to the development of esophageal cancer by activation of Akt. However, the possible interaction between Akt and Hippo/YAP pathways in esophageal cancer progression is unclear. In this study, we found that ursolic acid (UA) plus 3'3-diindolylmethane (DIM) efficiently suppressed the oncogenic Akt/Gsk-3β signaling pathway while activating the Hippo tumor suppressor pathway in esophageal cancer cells. Moreover, the addition of the Akt inhibitor LY294002 and the PI3K inhibitor 3-methyladenine enhanced the inhibitory effects of UA plus DIM on Akt pathway activation and further stimulated the Hippo pathway, including the suppression of YAP nuclear translocation in esophageal cancer cells. Silencing YAP under UA plus DIM conditions significantly increased the activation of the tumor suppressor PTEN in esophageal cancer cells, while decreasing p-Akt activation, indicating that the Akt signaling pathway could be down-regulated in esophageal cancer cells by targeting PTEN. Furthermore, in a xenograft nude mice model, UA plus DIM treatment effectively diminished esophageal tumors by inactivating the Akt pathway and stimulating the Hippo signaling pathway. Thus, our study highlights a feedback loop between the PI3K/Akt and Hippo signaling pathways in esophageal cancer cells, implying that a low dose of UA plus DIM could serve as a promising chemotherapeutic combination strategy in the treatment of esophageal cancer.

MicroRNA-451 Inhibits Growth of Human Colorectal Carcinoma Cells via Downregulation of Pi3k/Akt Pathway

  • Li, Hong-Yan;Zhang, Yan;Cai, Jian-Hui;Bian, Hong-Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3631-3634
    • /
    • 2013
  • MicroRNAs (MiRNAs) play important roles in coordinating a variety of cellular processes and abnormal expression has been linked to the occurrence of several cancers. The miRNA miR-451 is downregulated in colorectal carcinoma (CRC) cells, suggested by several research groups including our own. In this study, synthetic miR-451 mimics were transfected into the SW620 human CRC cell line using Lipofectamine 2000 and expression of miR-451 was analyzed by real time PCR, while expression of CAB39, LKB1, AMPK, AKT, PI3K and Bcl2 was analyzed by Western blot, and cell growth was detected by MTT assay. In comparison to the controls, a significant increase in the expression of miR-451 was associated with significantly decreased expression of CAB39, LKB1, AMPK, AKT, PI3K and Bcl2. The capacity of cell proliferation was significantly decreased by miR-451 expression, which also inhibited cell growth. Our study confirmed that miR-451 has a repressive role in CRC cells by inhibiting cell growth through down-regulating the P13K/AKT pathway.

Hydrogen sulfide ameliorates abdominal aorta coarctation-induced myocardial fibrosis by inhibiting pyroptosis through regulating eukaryotic translation initiation factor 2α phosphorylation and activating PI3K/AKT1 pathway

  • Yaling Li;Zhixiong Wu;Jiangping Hu;Gongli Liu;Hongming Hu;Fan Ouyang;Jun Yang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.345-356
    • /
    • 2023
  • This study aimed to assess the effects of exogenous hydrogen sulfide (H2S) on abdominal aorta coarctation (AAC) induced myocardial fibrosis (MF) and autophagy in rats. Forty-four Sprague-Dawley rats were randomly divided into control group, AAC group, AAC + H2S group, and H2S control group. After a model of rats with AAC was built surgically, AAC + H2S group and H2S group were injected intraperitoneally with H2S (100 µmol/kg) daily. The rats in the control group and the AAC group were injected with the same amount of PBS. We observed that H2S can improve left ventricular function and the deposition of myocardial collagen fibers, inhibit pyroptosis, down-regulate the expression of P-eif2α in myocardial tissue, and inhibit cell autophagy by activating the phosphatidylinositol 3-kinase (PI3K)/AKT1 signaling pathway (p < 0.05). In addition, angiotensin II (1 µM) H9c2 cardiomyocytes were injured in vitro experiments, and it was also observed that pyroptosis was inhibited after H2S (400 µmol/kg) intervention, the expression of P-eif2α in cardiomyocytes was significantly down-regulated, and the PI3K/AKT1 signaling pathway was activated at the same time. Therefore, increasing the expression of P-eif2α reverses the activation of the PI3K/AKT1 signaling pathway by H2S. In conclusion, these findings suggest that exogenous H2S can ameliorate MF in rats with AAC by inhibiting pyroptosis, and the mechanism may be associated with inhibiting the phosphorylation of eif2α and activating the PI3K/AKT1 signaling pathway to inhibit excessive cell autophagy.

Antithrombotic Effect of Artemisinin through Phosphoprotein Regulation in U46619-induced Platelets

  • Dong-Ha Lee
    • Biomedical Science Letters
    • /
    • v.29 no.3
    • /
    • pp.184-189
    • /
    • 2023
  • Normal activation of platelets and their aggregation are crucial during hemostasis process. It appears excessive or abnormal aggregation of platelets may bring about cardiovascular diseases like stroke, atherosclerosis, and thrombosis. For this reason, finding a substance that can regulate platelet aggregation or suppress aggregation will aid in the prevention and treatment of cardiovascular diseases. Artemisinin, a compound derived from Artemisia or Scopolia plants, has shown potential in various areas such as anticancer and Alzheimer's disease research. However, the specific role and mechanisms by which artemisinin influences platelet activation and thrombus formation are not yet fully understood. This study investigated the effects of artemisinin on platelet activation and thrombus formation. This study examined the effect of artemisinin on regulation of U46619-induced platelet aggregation, granule secretion. In addition, the effects of artemisinin on phosphorylation of PI3K/Akt and MAPK pathway involved in platelet aggregation was studied. As a result, artemisinin significantly downregulated of PI3K/Akt and MAPK pathway. In addition, artemisinin significantly reduced granule secretion, and platelet aggregation was inhibited by artemisinin. Therefore, we suggest that artemisinin is an anti-platelet substance that regulates PI3K/Akt and MAPK pathway and is valuable as a therapeutic and preventive agent for platelet-derived cardiovascular disease.

Predictive and Prognostic Significance of p27, Akt, PTEN and PI3K Expression in HER2-Positive Metastatic Breast Cancer

  • Okutur, Kerem;Bassulu, Nuray;Dalar, Levent;Aydin, Kubra;Bozkurt, Mustafa;Pilanci, Kezban Nur;Dogusoy, Gulen Bulbul;Tecimer, Coskun;Mandel, Nil Molinas;Demir, Gokhan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2645-2651
    • /
    • 2015
  • Background: The phosphatidylinositol 3'-kinase/Akt (PI3K/Akt) pathway is a key regulator for HER2-overexpressing breast cancer, but data about whether activation of PI3K/Akt is associated with poor prognosis and resistance to trastuzumab therapy is controversial. In this study we investigated predictive and prognostic significance of expression of p27, Akt, PTEN and PI3K, which are components of the PI3K/Akt signaling pathway, in HER2-positive metastatic breast cancer (MBC), retrospectively. Materials and Methods: Fifty-four HER2-positive MBC patients who had received first-line trastuzumab-based therapy were recruited for the study group. All of the patient's breast tissue samples were examined for p27 and Akt expression. In addition, twenty-five patients with sufficient amount of tumor tissue were also examined for PTEN and PI3K expression. p27, Akt, PTEN and PI3K were evaluated by immunohistochemistry and their relationship with patient demographic features, tumor characteristics, response to trastuzumab-based treatment and survival outcomes were analyzed. Results: p27, Akt, PTEN and PI3K were positive in 25.9%, 70.4%, 24% and 96% of the cases, respectively. Nomne were significantly associated with response to trastuzumab and time to progression (TTP). A trend toward statistical significance for longer overall survival (OS) was found for PTEN-positive patients (p=0.058); there was no significant relationship between the other immunohistochemical variables and OS. When we analyzed groups regarding co-expression, the PTEN-negative/Akt-negative group had a significantly lower objective response rate (ORR) (20% vs 80%, p=0.023) and the PTEN-negative/p27-negative and PTEN-negative/Akt-negative groups had significantly lower median OS compared to other patients (26.4 months vs 76.1 months, p=0.005 and 25.6 months vs 52.0 months, p=0.007, respectively). Conclusions: p27, Akt, PTEN and PI3K expression is not statistically significantly associated with ORR, TTP and OS, individually. However, the combined evaluation of p27, Akt and PTEN could be helpful to predict the response to trastuzumab-based therapy and prognosis in HER2-positive MBC.