DOI QR코드

DOI QR Code

Genetic Variants in the PI3K/PTEN/AKT/mTOR Pathway Predict Platinum-based Chemotherapy Response of Advanced Non-small Cell Lung Cancers in a Chinese Population

  • Xu, Jia-Li (Department of Oncology, The First Affiliated Hospital of Nanjing Medical University) ;
  • Wang, Zhen-Wu (Department of Radiation, Wuxi No. 4 Hospital) ;
  • Hu, Ling-Min (Department of Epidemiology and Biostatistics, MOE Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University) ;
  • Yin, Zhi-Qiang (Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University) ;
  • Huang, Ming-De (Department of Oncology, Huai'an No.1 Hospital Affiliated to Nanjing Medical University) ;
  • Hu, Zhi-Bin (Department of Epidemiology and Biostatistics, MOE Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University) ;
  • Shen, Hong-Bing (Department of Epidemiology and Biostatistics, MOE Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University) ;
  • Shu, Yong-Qian (Department of Oncology, The First Affiliated Hospital of Nanjing Medical University)
  • Published : 2012.05.30

Abstract

Objective: The PI3K/PTEN/AKT/mTOR signaling pathway has been implicated in resistance to cisplatin. In the current study, we determined whether common genetic variations in this pathway are associated with platinum-based chemotherapy response and clinical outcome in advanced non-small cell lung cancer (NSCLC) patients. Methods: Seven common single nucleotide polymorphisms (SNPs) in core genes of this pathway were genotyped in 199 patients and analyzed for associations with chemotherapy response, progression-free survival (PFS) and overall survival (OS). Results: Logistic regression analysis revealed an association between AKT1 rs2494752 and response to treatment. Patients carrying heterozygous AG had an increased risk of disease progression after two cycles of platinum-based chemotherapy compared to those with AA genotype (Adjusted odds ratio (OR)=2.18, 95% confidence interval (CI): 1.00-4.77, which remained significant in the stratified analyses). However, log-rank test and cox regression detected no association between these polymorphisms in the PI3K pathway genes and survival in advanced NSCLC patients. Conclusions: Our findings suggest that genetic variants in the PI3K/PTEN/AKT/mTOR pathway may predict platinum-based chemotherapy response in advanced NSCLC patients in a Chinese population.

Keywords

References

  1. Alessi DR, James SR, Downes CP, et al (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol, 7, 261-9. https://doi.org/10.1016/S0960-9822(06)00122-9
  2. Balsara BR, Pei J, Mitsuuchi Y, et al (2004). Frequent activation of AKT in non-small cell lung carcinomas and preneoplastic bronchial lesions. Carcinogenesis, 25, 2053-9. https://doi.org/10.1093/carcin/bgh226
  3. Bellacosa A, Kumar CC, Di Cristofano A, Testa JR (2005). Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res, 94, 29-86. https://doi.org/10.1016/S0065-230X(05)94002-5
  4. Brognard J, Clark AS, Ni Y, Dennis PA (2001). Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res, 61, 3986-97.
  5. Chen M, Cassidy A, Gu J, et al (2009). Genetic variations in PI3K-AKT-mTOR pathway and bladder cancer risk. Carcinogenesis, 30, 2047-52. https://doi.org/10.1093/carcin/bgp258
  6. Chen M, Gu J, Delclos GL, et al (2010). Genetic variations of the PI3K-AKT-mTOR pathway and clinical outcome in muscle invasive and metastatic bladder cancer patients. Carcinogenesis, 31, 1387-91. https://doi.org/10.1093/carcin/bgq110
  7. Conde E, Angulo B, Tang M, et al (2006). Molecular context of the EGFR mutations: evidence for the activation of mTOR/ S6K signaling. Clin Cancer Res, 12, 710-7. https://doi.org/10.1158/1078-0432.CCR-05-1362
  8. David O (2001). Akt and PTEN: new diagnostic markers of nonsmall cell lung cancer? J Cell Mol Med, 5, 430-3. https://doi.org/10.1111/j.1582-4934.2001.tb00178.x
  9. David O, Jett J, LeBeau H, et al (2004). Phospho-Akt overexpression in non-small cell lung cancer confers significant stage-independent survival disadvantage. Clin Cancer Res, 10, 6865-71. https://doi.org/10.1158/1078-0432.CCR-04-0174
  10. Eisenhauer EA, Therasse P, Bogaerts J, et al (2009). New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer, 45, 228-47. https://doi.org/10.1016/j.ejca.2008.10.026
  11. Gagnon V, Van Themsche C, Turner S, et al (2008). Akt and XIAP regulate the sensitivity of human uterine cancer cells to cisplatin, doxorubicin and taxol. Apoptosis, 13, 259-71. https://doi.org/10.1007/s10495-007-0165-6
  12. Han S, Khuri FR, Roman J (2006). Fibronectin stimulates nonsmall cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer Res, 66, 315-23. https://doi.org/10.1158/0008-5472.CAN-05-2367
  13. Hildebrandt MA, Yang H, Hung MC, et al (2009). Genetic variations in the PI3K/PTEN/AKT/mTOR pathway are associated with clinical outcomes in esophageal cancer patients treated with chemoradiotherapy. J Clin Oncol, 27, 857-71. https://doi.org/10.1200/JCO.2008.17.6297
  14. Kartalou M, Essigmann JM (2001). Mechanisms of resistance to cisplatin. Mutat Res, 478, 23-43. https://doi.org/10.1016/S0027-5107(01)00141-5
  15. Kim JG, Chae YS, Sohn SK, et al (2010). Clinical significance of genetic variations in the PI3K/PTEN/AKT/mTOR pathway in Korean patients with colorectal cancer. Oncology, 79, 278-82. https://doi.org/10.1159/000320761
  16. Kim SH, Juhnn YS, Song YS (2007). Akt involvement in paclitaxel chemoresistance of human ovarian cancer cells. Ann N Y Acad Sci, 1095, 82-9. https://doi.org/10.1196/annals.1397.012
  17. Kokubo Y, Gemma A, Noro R, et al (2005). Reduction of PTEN protein and loss of epidermal growth factor receptor gene mutation in lung cancer with natural resistance to gefitinib (IRESSA). Br J Cancer, 92, 1711-9. https://doi.org/10.1038/sj.bjc.6602559
  18. Koutros S, Schumacher FR, Hayes RB, et al (2010). Pooled analysis of phosphatidylinositol 3-kinase pathway variants and risk of prostate cancer. Cancer Res, 70, 2389-96. https://doi.org/10.1158/0008-5472.CAN-09-3575
  19. Le Chevalier T (2010). Adjuvant chemotherapy for resectable non-small-cell lung cancer: where is it going? Annals of Oncology, 21, vii196. https://doi.org/10.1093/annonc/mdq376
  20. Lee S, Choi EJ, Jin C, Kim DH (2005). Activation of PI3K/ Akt pathway by PTEN reduction and PIK3CA mRNA amplification contributes to cisplatin resistance in an ovarian cancer cell line. Gynecol Oncol, 97, 26-34. https://doi.org/10.1016/j.ygyno.2004.11.051
  21. Lin J, Wang J, Greisinger AJ, et al (2010). Energy balance, the PI3K-AKT-mTOR pathway genes, and the risk of bladder cancer. Cancer Prev Res (Phila), 3, 505-17. https://doi.org/10.1158/1940-6207.CAPR-09-0263
  22. Liu LZ, Zhou XD, Qian G, et al (2007). AKT1 amplification regulates cisplatin resistance in human lung cancer cells through the mammalian target of rapamycin/p70S6K1 pathway. Cancer Res, 67, 6325-32. https://doi.org/10.1158/0008-5472.CAN-06-4261
  23. Marsit CJ, Zheng S, Aldape K, et al (2005). PTEN expression in non-small-cell lung cancer: evaluating its relation to tumor characteristics, allelic loss, and epigenetic alteration. Hum Pathol, 36, 768-76. https://doi.org/10.1016/j.humpath.2005.05.006
  24. Massion PP, Taflan PM, Shyr Y, et al (2004). Early involvement of the phosphatidylinositol 3-kinase/Akt pathway in lung cancer progression. Am J Respir Crit Care Med, 170, 1088-94. https://doi.org/10.1164/rccm.200404-487OC
  25. Mungamuri SK, Yang X, Thor AD, Somasundaram K (2006). Survival signaling by Notch1: mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer Res, 66, 4715-24. https://doi.org/10.1158/0008-5472.CAN-05-3830
  26. Naruke T, Tsuchiya R, Kondo H, Asamura H (2001). Prognosis and survival after resection for bronchogenic carcinoma based on the 1997 TNM-staging classification: the Japanese experience. Ann Thorac Surg, 71, 1759-64. https://doi.org/10.1016/S0003-4975(00)02609-6
  27. Pu X, Hildebrandt MA, Lu C, et al (2010). PI3K/PTEN/ AKT/mTOR pathway genetic variation predicts toxicity and distant progression in lung cancer patients receiving platinum-based chemotherapy. Lung Cancer, 71, 82-8.
  28. Siddik ZH (2003). Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene, 22, 7265-79. https://doi.org/10.1038/sj.onc.1206933
  29. Singhal S, Amin KM, Kruklitis R, et al (2003). Differentially expressed apoptotic genes in early stage lung adenocarcinoma predicted by expression profiling. Cancer Biol Ther, 2, 566- 71. https://doi.org/10.4161/cbt.2.5.514
  30. Slattery ML, Herrick JS, Lundgreen A, et al (2010). Genetic variation in a metabolic signaling pathway and colon and rectal cancer risk: mTOR, PTEN, STK11, RPKAA1, PRKAG2, TSC1, TSC2, PI3K and Akt1. Carcinogenesis, 31, 1604-11. https://doi.org/10.1093/carcin/bgq142
  31. Soria JC, Lee HY, Lee JI, et al (2002). Lack of PTEN expression in non-small cell lung cancer could be related to promoter methylation. Clin Cancer Res, 8, 1178-84.
  32. Spira A, Ettinger DS (2004). Multidisciplinary management of lung cancer. N Engl J Med, 350, 379-92. https://doi.org/10.1056/NEJMra035536
  33. Spiro SG, Silvestri GA (2005). The treatment of advanced nonsmall cell lung cancer. Curr Opin Pulm Med, 11, 287-91. https://doi.org/10.1097/01.mcp.0000166590.03042.56
  34. Subramanian A, Tamayo P, Mootha VK, et al (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA, 102, 15545-50. https://doi.org/10.1073/pnas.0506580102
  35. Tang JM, He QY, Guo RX, Chang XJ (2006). Phosphorylated Akt overexpression and loss of PTEN expression in nonsmall cell lung cancer confers poor prognosis. Lung Cancer, 51, 181-91. https://doi.org/10.1016/j.lungcan.2005.10.003
  36. Tee AR, Fingar DC, Manning BD, et al (2002). Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci USA, 99, 13571-6. https://doi.org/10.1073/pnas.202476899
  37. Tsurutani J, Fukuoka J, Tsurutani H, et al (2006). Evaluation of two phosphorylation sites improves the prognostic significance of Akt activation in non-small-cell lung cancer tumors. J Clin Oncol, 24, 306-14. https://doi.org/10.1200/JCO.2005.02.4133
  38. Vandenbroucke E, De Ryck F, Surmont V, van Meerbeeck JP (2009). What is the role for surgery in patients with stage III non-small cell lung cancer? Curr Opin Pulm Med, 15, 295-302. https://doi.org/10.1097/MCP.0b013e32832cbefc
  39. Wojtalla A, Arcaro A (2011). Targeting phosphoinositide 3-kinase signalling in lung cancer. Crit Rev Oncol Hematol, 80, 278-90. https://doi.org/10.1016/j.critrevonc.2011.01.007

Cited by

  1. Roles of mTOR and p-mTOR in Gastrointestinal Stromal Tumors vol.14, pp.10, 2013, https://doi.org/10.7314/APJCP.2013.14.10.5925
  2. The Role of Phenethyl Isothiocyanate on Bladder Cancer ADM Resistance Reversal and Its Molecular Mechanism vol.296, pp.6, 2013, https://doi.org/10.1002/ar.22677
  3. Roles of PTEN (Phosphatase and Tensin Homolog) in Gastric Cancer Development and Progression vol.15, pp.1, 2014, https://doi.org/10.7314/APJCP.2014.15.1.17
  4. Effects of Ribosomal Protein L39-L on the Drug Resistance Mechanisms of Lung Cancer A549 Cells vol.15, pp.7, 2014, https://doi.org/10.7314/APJCP.2014.15.7.3093
  5. Combined Effects of Genetic Variants of the PTEN, AKT1, MDM2 and p53 Genes on the Risk of Nasopharyngeal Carcinoma vol.9, pp.3, 2014, https://doi.org/10.1371/journal.pone.0092135
  6. Association of mTOR Polymorphisms with Cancer Risk and Clinical Outcomes: A Meta-Analysis vol.9, pp.5, 2014, https://doi.org/10.1371/journal.pone.0097085
  7. Association of the PTEN IVS4 (rs3830675) Gene Polymorphism with Reduced Risk of Cancer: Evidence from a Meta-analysis vol.16, pp.3, 2015, https://doi.org/10.7314/APJCP.2015.16.3.897
  8. Genetic variations in DROSHA and DICER and survival of advanced non-small cell lung cancer: a two-stage study in Chinese population vol.37, pp.7, 2015, https://doi.org/10.1007/s13258-015-0286-1
  9. Association Between Genetic Variants of Akt1 and Endometrial Cancer vol.53, pp.11-12, 2015, https://doi.org/10.1007/s10528-015-9690-0
  10. genes and oesophageal squamous cell carcinoma risk in an Eastern Chinese population vol.20, pp.4, 2016, https://doi.org/10.1111/jcmm.12750
  11. and Ginseng-Containing Chinese Herbal Formulation NSENL Reverses Cisplatin Resistance in Lung Cancer Xenografts vol.45, pp.02, 2017, https://doi.org/10.1142/S0192415X17500240
  12. TAZ inhibition restores sensitivity of cisplatin via AKT/mTOR signaling in lung adenocarcinoma vol.38, pp.3, 2017, https://doi.org/10.3892/or.2017.5847