• Title/Summary/Keyword: PI algorithm

Search Result 547, Processing Time 0.024 seconds

$\pi$/4 shift QPSK with Trellis-Code and Lth Phase Different Metrics (Trellis 부호와 L번째 위상차 메트릭(metrics)을 갖는$\pi$/4 shift QPSK)

  • 김종일;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.10
    • /
    • pp.1147-1156
    • /
    • 1992
  • In this paper, in order to apply the $\pi/4$ shift QPSK to TCM, we propose the $\pi/8$ shift 8PSK modulation technique and the trellis-coded $\pi/8$ shift 8PSK performing signal set expansion and partition by phase difference. In addition, the Viterbi decoder with branch metrics of the squared Euclidean distance of the first phase difference as well as the Lth phase different is introduced in order to improve the bit error rate(BER) performance in differential detection of the trellis-coded $\pi/8$ shift 8PSK. The proposed Viterbi decoder is conceptually the same as the sliding multiple detection by using the branch metric with first and Lth order phase difference. We investigate the performance of the uncoded $\pi/4$ shift QPSK and the trellis-coded $\pi/8$ shift 8PSK with or without the Lth phase difference metric in an additive white Gaussian noise (AWGN) using the Monte Carlo simulation. The study shows that the $\pi/4$ shift QPSK with the Trellis-code i.e. the trellis-coded $\pi/8$ shift 8PSK is an attractive scheme for power and bandlimited systems and especially, the Viterbi decoder with first and Lth phase difference metrics improves BER performance. Also, the nest proposed algorithm can be used in the TC $\pi/8$ shift 8PSK as well as TCMDPSK.

  • PDF

Dynamic modeling and control of IPMC hydrodynamic propulsor

  • Agrahari, Shivendra K.;Mukherjee, Sujoy
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.499-508
    • /
    • 2017
  • The ionic polymer-metal composite (IPMC) is an electroactive polymer material and has a promising potential as actuators for propulsion and locomotion in underwater systems. In this paper a physics based model is used to analyse the actuation dynamics of the IPMC propulsor. Moreover, proportional-integral (PI) controller is used for position control of the tip displacement of IPMC propulsor. PI parameter tuning is performed using particle swarm optimization (PSO) algorithm. Several performance indices have been used as an objective function to optimize the error of the system. Finally, the best tuning method is found out by comparing the results under various performance indices.

Adjustment Algorithm of Incident Light Power for Improving Performance of Laser Surface Roughness Measurement (레이저 표면 거칠기 측정 성능 향상을 위한 입사 광강도 조정 알고리즘)

  • 서영호;김화영;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.79-87
    • /
    • 2004
  • The light pattern reflected from a machined surface contains some information like roughness and profile on the projected surface as expected in the Beckmann-Spizzichino model. In applying the theory into a real reliable measuring device, many parameters such as incident light power, wave length, spot size should be kept a constant optical value. However, the reflected light power is likely to change with the environmental noise, the variations of the light source, the reflectivity of the surface, etc. even though the incident light power is constant. In this study, a method for adjusting the incident light power to keep the reflected light power projected on a CMOS image sensor constant was proposed and a simple adjustment algorithm based on PI digital control was examined. Experiments verified that the proposed method made the surface roughness measurement better and more reliable even under variations of the height of light source.

Improved Performance of Permanent Magnet Synchronous Motor by using Particle Swarm Optimization Techniques

  • Elwer, A.S.;Wahsh, S.A.
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.207-214
    • /
    • 2009
  • This paper presents a modem approach for speed control of a PMSM using the Particle Swarm Optimization (PSO) algorithm to optimize the parameters of the PI-Controller. The overall system simulated under various operating conditions and an experimental setup is prepared. The use of PSO as an optimization algorithm makes the drive robust, with faster dynamic response, higher accuracy and insensitive to load variation. Comparison between different controllers is achieved, using a PI controller which is tuned by two methods, firstly manually and secondly using the PSO technique. The system is tested under variable operating conditions. Implementation of the experimental setup is done. The simulation results show good dynamic response with fast recovery time and good agreement with experimental controller.

Comparisom of Control Algorithm for Simultaneous Control of DC-DC Converter (DC-DC 컨버터 동시제어의 제어 알고리즘 비교)

  • Park, Hyo-Sik;Han, Woo-Yong;Lee, Gong-Hee
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.4
    • /
    • pp.163-168
    • /
    • 2002
  • This paper presents the comparison results of control algorithm for the simultaneous control of a multi output converter system that controls, simultaneously and independently, the separate Buck converter and Boost converter with the different specification by one DSP digital controller. As two separate converters are regulated by only one DSP, it is possible to achieve the simple digital control circuit for regulating the multi output DC-DC converter. By setting the software switch state, PI and Fuzzy controller can be applied as a controller for each converter without any change of hardware. Also, it is included the control characteristics comparison between PI and Fuzzy controller. The control characteristics of each PWM DC-DC converter is validated by experimental results.

A Study on Filament Winding Tension Control using a fuzzy-PID Algorithm (퍼지-PID 알고리즘을 이용한 필라멘트 와인딩 장력제어에 관한 연구)

  • 이승호;이용재;오재윤
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.30-37
    • /
    • 2004
  • This thesis develops a fuzzy-PID control algorithm for control the filament winding tension. It is developed by applying classical PID control technique to a fuzzy logic controller. It is composed of a fuzzy-PI controller and a fuzzy-D controller. The fuzzy-PI controller uses error and integrated error as inputs, and the fuzzy-D controller uses derivative of error as input. The fuzzy-PI controller uses Takagi-Sugeno fuzzy inference system, and the fuzzy-D controller uses Mamdani fuzzy inference system. The fuzzy rule base for the fuzzy-PI controller is designed using 19 rules, and the fuzzy rule base for the fuzzy-D controller is designed using 5 rules. A test-bed is set-up for verifying the effectiveness of the developing control algorithm in control the filament winding tension. It is composed of a mandrel, a carriage, a force sensor, a driving roller, nip rollers, a creel, and a real-time control system. Nip rollers apply a vertical force to a filament, and the driving roller drives it. The real-time control system is developed by using MATLAB/xPC Target. First, experiments for showing the inherent problems of an open-loop control scheme in a filament winding are performed. Then, experiments for showing the robustness of the developing fuzzy-PID control algorithm are performed under various working conditions occurring in a filament winding such as mandrel rotating speed change, carriage traversing, spool radius change, and reference input change.

Speed Control of Induction Machine with Fuzzy PI Controller using MATLAB/SIMULINK (MATLAB/SIMULINK를 이용한 유도전동기 퍼지 PI제어기의 속도제어)

  • 이학주
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.211-214
    • /
    • 2000
  • The conventional PI controller has been widely used in industrial application due to the simple control algorithm. But it is very difficult to find the optimal PI control gain. Therefore in this paper to obtain optimal performance fuzzy proportional-plus-integral controller for the vector control system of an induction machine is presented. The simulation model is created in MATLAB/SIMULINK. The simulation results demonstrate the good performance of this system.

  • PDF

Auto-Tuning PI control using limitted step response for brushless DC motor speed control (브러시리스 직류전동기 속도 제어를 위한 한계스텝응답 특성을 이용한 Auto-tuning PI 제어)

  • 전장현;전인효최중경박승엽
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.203-206
    • /
    • 1998
  • This paper describes the procedure of getting information about auto-tuning of PID regulator by the injection of high step input, called limited input, during a transient time of control. The key point is that system identification and control could be continuously executed. This means that the system information obtained by limited input despite of system uncertainty can be continuously applied to the PI regulator. Simulation and experiment result of brushless DC motor system having monotone increasing step response demonstrate the usefulness of proposed auto-tuning algorithm.

  • PDF

Design of a Fuzzy PI/PD Controller Based on Genetic Algorithm for Optical Disk Drive (유전알고리즘 기반 광디스크를 위한 퍼지 PI/PD 제어기 설계)

  • Yu, Jong-Hwa;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2221-2223
    • /
    • 2004
  • 본 논문에서는 유전알고리즘을 기반으로 하여 설계된 광 디스크 드라이브의 광학헤드 구동기용 퍼지 PI/PD 제어기를 제안한다. 본 논문에서 제안하는 제어기는 광디스크 드라이브의 광학헤드용 구동기의 포커싱 서보계, 트랙킹 서보계를 제어할 수 있는 퍼지 제어기이며 유전알고리즘을 통해 최적의 퍼지 규칙을 도출한다. 그리고 이를 토대로 모의실험을 수행한다.

  • PDF

Robust design of SISO digital PI and PID predictor controllers (Robust한 단 입출력 PI 및 PID 예측 제어기 설계)

  • 전병균;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.362-366
    • /
    • 1986
  • Using simple linear prediction algorithm a design procedure of robust PI and PID controllers for SISO system, usually called 'PID predictor controllers, is developed. The design procedure is able to properly adjust gain margin and phase margin and control coefficients are selected in frequency domain. The performance of the PID predictor controller is superior to that of the normal PID controller in terms of robustness in design and disturbance rejection.

  • PDF