DOI QR코드

DOI QR Code

Dynamic modeling and control of IPMC hydrodynamic propulsor

  • Agrahari, Shivendra K. (PDPM Indian Institute of Information and Technology, Design and Manufacturing Jabalpur) ;
  • Mukherjee, Sujoy (PDPM Indian Institute of Information and Technology, Design and Manufacturing Jabalpur)
  • Received : 2016.09.07
  • Accepted : 2017.05.26
  • Published : 2017.10.25

Abstract

The ionic polymer-metal composite (IPMC) is an electroactive polymer material and has a promising potential as actuators for propulsion and locomotion in underwater systems. In this paper a physics based model is used to analyse the actuation dynamics of the IPMC propulsor. Moreover, proportional-integral (PI) controller is used for position control of the tip displacement of IPMC propulsor. PI parameter tuning is performed using particle swarm optimization (PSO) algorithm. Several performance indices have been used as an objective function to optimize the error of the system. Finally, the best tuning method is found out by comparing the results under various performance indices.

Keywords

References

  1. Aureli, M., Kopman, V. and Porfiri, M. (2010), "Free-locomotion of underwater vehicles actuated by ionic polymer metal composites", IEEE/ASME T. Mechatronics, 15(4), 603-614. https://doi.org/10.1109/TMECH.2009.2030887
  2. Bandyopadhyay, P.R. (2005), "Trends in biorobotic autonomous undersea vehicles", IEEE J. Ocean Eng., 30(1), 109-139. https://doi.org/10.1109/JOE.2005.843748
  3. Chen, Z. and Tan, X. (2008), "A Control-oriented and physicsbased model for ionic polymer-metal composite actuators", IEEE/ASME T. Mechatronics, 13(5), 519-529. https://doi.org/10.1109/TMECH.2008.920021
  4. Chen, Z., Hedgepeth, D.R. and Tan, X. (2009), "A nonlinear, control oriented model for ionic polymer-metal composite actuators", Smart Mater. Struct., 18(5), 055008 (9pp). https://doi.org/10.1088/0964-1726/18/5/055008
  5. Chen, Z., Shatara, S. and Tan, X. (2010), "Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite caudal fin", IEEE/ASME T. Mechatronics, 15(3), 448-459. https://doi.org/10.1109/TMECH.2009.2027812
  6. Chen, Z., Tan, X., Will, A. and Ziel, C. (2007), "A dynamic model for ionic polymer-metal composite sensors", Smart Materials and Structures, 16(4), 1477-1488. https://doi.org/10.1088/0964-1726/16/4/063
  7. Cho, S., Jo, H., Jang, S., Park, J., Jung, H.J., Yun, C.B., Spencer Jr. B.F. and Seo, J.W. (2010), "Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: Data analyses", Smart Struct. Syst., 6(5-6), 461-480. https://doi.org/10.12989/sss.2010.6.5_6.461
  8. Clerc, M. (1999), "The Swarm and the queen: towards a deterministic and adaptive particle swarm optimization", Proceedings of the Conference on Evolutionary Computation, Washington D. C. USA.
  9. Gaing, Z.L. (2004). "A particle swarm optimization approach for optimum design of PID controller in AVR system", IEEE T. Energy Conver., 19(2), 384-391. https://doi.org/10.1109/TEC.2003.821821
  10. Guo, S., Fukuda, T. and Asaka, K. (2003), "A new type of fishlike underwater microrobot", IEEE/ASME T. Mechatronics, 8(1), 136-141. https://doi.org/10.1109/TMECH.2003.809134
  11. Hubbard, J.J., Fleming, M., Palmre, V., Kim, K.J. and Leang, K.K. (2014), "Monolithic IPMC fins for propulsion and maneuvering in bioinspired underwater robotics", IEEE J. Oceanic Eng., 39(3), 540-551. https://doi.org/10.1109/JOE.2013.2259318
  12. Karthigan, G., Mukherjee, S. and Ganguli, R. (2015), "Fish inspired biomimetic ionic polymer-metal composite pectoral fins using labriform propulsion", Mech. Adv. Mater. Struct., 22(11), 933-944. https://doi.org/10.1080/15376494.2014.884656
  13. Kennedy, J. and Eberhart, R.C. (1995), "Particle swarm optimization", Proceeding of the IEEE International Conference on Neural Networks, Perth, Australia.
  14. Kim, K.J. and Shahinpoor, M. (2003), "Ionic polymer-metal composites: II. Manufacturing techniques", Smart Mater. Struct., 12(1), 65-79. https://doi.org/10.1088/0964-1726/12/1/308
  15. Lighthill, M.J. (1970), "Aquatic animal propulsion of high hydromechanical efficiency", J. Fluid Mech.., 44(2), 265-301. https://doi.org/10.1017/S0022112070001830
  16. Mbemmo, E., Chen, Z., Shatara, S. and Tan, X. (2008), "Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite actuator", Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA, United States.
  17. Mukherjee, S. and Ganguli, R. (2010), "A dragonfly inspired flapping wing actuated by electroactive polymers", Smart Struct. Syst., 6(7), 867-887. https://doi.org/10.12989/sss.2010.6.7.867
  18. Nemat-Nasser, S. and Li, J.Y. (2000), "Electromechanical response of ionic polymer-metal composites", J. Appl. Phys., 87(7), 3321-3331. https://doi.org/10.1063/1.372343
  19. Ogata, K. (2010), Modern Control Systems (5th Ed.), Prentice Hall, New Jersey, USA.
  20. Richardson, R.C., Levesley, M.C., Brown, M.D., Hawkes, J.A., Watterson, K. and Walker, P.G. (2003), "Control of ionic polymer metal composites", IEEE/ASME T. Mechatronics, 8(2), 245-253. https://doi.org/10.1109/TMECH.2003.812835
  21. Sfakiotakis, M., Lane, D.M. and Davies, J.B.C. (1999), "Review of fish swimming modes for aquatic locomotion", IEEE J. Oceanic Eng., 24(2), 237-252. https://doi.org/10.1109/48.757275
  22. Shahinpoor, M. and Kim, K.J. (2001), "Ionic polymer-metal composites: I. Fundamentals", Smart Mater. Struct., 10(4), 819-833. https://doi.org/10.1088/0964-1726/10/4/327
  23. Shahinpoor, M. and Kim, K.J. (2004), "Ionic polymer-metal composites - III. Modeling and simulation as biomimetic sensors, actuators, transducers and artificial muscles", Smart Mater. Struct., 13(6), 1362-1388. https://doi.org/10.1088/0964-1726/13/6/009
  24. Shen, Q., Wang, T. and Kim, K.J. (2015), "A biomimetic underwater vehicle actuated by waves with ionic polymer-metal composite soft sensors", Bioinspiration Biomimetics, 10(5), Article No. 055007.
  25. Shen, Q., Wang, T., Wen, L. and Liang, J. (2013), "Modeling and fuzzy control of an efficient swimming ionic polymer-metal composite actuated robot", Int. J. Adv. Robot. Syst., 10, 1-13. https://doi.org/10.5772/52938
  26. Shi, H. and Eberhart, R. (1998), "A modified particle swarm optimizer", Proceedings of the IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, USA.
  27. Tiwari, R., Kim, K.J. and Kim, S.M. (2008), "Ionic polymer-metal composite as energy harvesters", Smart Struct. Syst., 4(5), 549-563. https://doi.org/10.12989/sss.2008.4.5.549
  28. Weiland, L.M. and Akle, B. (2010), "Ionic polymer transducers in sensing: The streaming potential hypothesis", Smart Struct. Syst., 6(3), 211-223. https://doi.org/10.12989/sss.2010.6.3.211
  29. Yim, W., Lee, J. and Kim, K.J. (2007), "An artificial muscle actuator for biomimetic underwater propulsors", Bioinspiration Biomimetic, 2(2), 31-41. https://doi.org/10.1088/1748-3182/2/2/S04