• Title/Summary/Keyword: PI Current control

Search Result 416, Processing Time 0.023 seconds

Implementation of Fuzzy Controller for HVDC Current Control Using Genetic A (유전알고리즘을 이용한 HVDC 정전류 제어용 퍼지제어기의 구현)

  • Kwon, Jung-Uk;Hwang, Gi-Hyun;Ahn, Jong-Bo;Kim, Hyung-Su;Mun, Kyeong-Jun;Park, Jun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.223-225
    • /
    • 2002
  • In this paper, we designed fuzzy legit controller(FLC) for HVDC current control using genetic algorithm. The proposed method was applied to HVDC power system simulator in Korea Electrotechnology Research Institute(KERI). We are adjusted input/output gain of FLC by real-time using genetic algorithm. Experimental results show that FLC has the better control performance than PI controller in terms of settling time, rising time.

  • PDF

Controller Design of current Mode Controlled DC/DC Converter using Fuzzy Logic Control (전류 모드 제어 방식을 이용하는 DC/DC 컨버터의 퍼지 논리 제어기 설계)

  • Jung, Young-Seok;Moon, Gun-Woo;Roh, Jung-Wook;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.385-387
    • /
    • 1995
  • The current mode controlled DC/DC converter using fuzzy logic controller is proposed. With the proposed control method, the robust and safty guaranteed operation are achieved. For comparison with conventional controller, the PI controller is selected. By the computer simulation results, the validities of the proposed control method will be shown.

  • PDF

An Improved Control Strategy Using a PI-Resonant Controller for an Unbalanced Stand-Alone Doubly-Fed Induction Generator

  • Phan, Van-Tung;Lee, Hong-Hee;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.194-202
    • /
    • 2010
  • The main cause of degradation in an unbalanced stand-alone doubly-fed induction generator (DFIG) system is negative sequence components that exist in the generated stator voltages. To eliminate these components, a hybrid current controller composed of a proportional-integral controller and a resonant regulator is developed in this paper. The proposed controller is applied to the rotor-side converter of a DFIG system for the purpose of compensating the negative stator voltage sequences. The proposed current controller is implemented in a single positive rotating reference frame and therefore the controller can directly regulate both the positive and negative sequence components without the need for sequential decomposition of the measured rotor currents. In terms of compensation capability and accuracy, simulations and experimental results demonstrated the excellent performance of the proposed control method when compared to conventional vector control schemes.

A Study of Control for 3 Phase BLDC Motor using Control Methodology of DC Motor (직류전동기 제어기법을 적용한 3상 BLDC 모터 제어에 관한 연구)

  • Jin-Man Kim;Taek-Kun Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.704-711
    • /
    • 2023
  • This paper discusses the control method of BLDC(Brushless Direct Current) motor that has similar electrical characteristics with DC motor but has improved its lifespan and reliability. The BLDC motor can improve durability and speed stability by using rotor position information to eliminate commutators that require mechanical contact with DC motors. In this study, a controller for a DC motor was designed based on the fact that the current in the windings of a BLDC motor is a square-wave current like the current flowing in the armature of a DC motor. Next, the designed controller was applied to a 3-phase BLDC motor to confirm the effectiveness of the controller. In detail, a single-phase DC motor with electrical parameter values of a three-phase BLDC motor was modeled and a PI controller for motor speed control was designed by applying the root locus method to the derived system. The speed control simulation of the DC motor was performed to confirm the validity of the controller, and the same controller was applied to the speed control of the 3-phase BLDC motor implemented in MATLAB. From the simulation, similar results of the DC motor were obtained in the 3 phase BLDC motor and confirmed the usefulness of the proposed control scheme.

Phase Current Variation of Bifilar-Wound Hybrid Stepping Motor by Lead Angle Control (Lead Angle 제어에 의한 복권형 하이브리드 스테핑 전동기의 상전류 변화에 관한 연구)

  • 우광준;이종언
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.1
    • /
    • pp.26-34
    • /
    • 1998
  • In this paper, we confirm that the instanteneous phase current of the bifilar-wound hybrid stepping motor is dependent of lead angle by the experimental results. The variation of phase current with lead angle gives informations about the rotor position at the moment when phase winding coil is excited. We show that the rotor position of the bifilar-wound hybrid stepping motor for the closed-loop drives can be detected by using the instantaneous phase current measurement. We propose an instantaneous phase current equation as the function of electrical lead angle by the modeling of the bifilar-wound hybrid stepping motor. We also analyze the relationship between instantaneous phase current and rotor position by the computer simulation results. By the experimental results, we also confirm that the information about the rotor position can be obtained from the instantaneous phase current values at the instance of $\pi/2$ electrical angle of excitation pulse. pulse.

  • PDF

Speed Control of a Sinusoidal Type Brushless DC Motor using an Auto-tuning Method (자동동조 기법을 이용한 정현파형 BLDC 전동기의 속도제어)

  • 전인효;노민식;최중경;박승엽
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.1
    • /
    • pp.41-50
    • /
    • 1999
  • The brushless DC motor is widely being used in unmanned factories for its easy maintenance and characteristics of controllability. In this paper, we designed a speed control servo system of a sinusoidal type bmshless DC motor which has high efficiency and usefulness in the industrial fields. This servo system is realized by a controller which is required for driving motors and a new auto-tuning PI control algorithm. The DSP(Digita1 Signal Processor) is adopted as a main controller and a sensor signal processor owing to its fast computational capability and suitable architecture. Also, the hardware PWnl(Pulse Width Modulation) current controller is implemented to pursue a speed command exactly. By experimental results, it is verified that the speed response is pursued fast after command value and the steady-state response is well converged for command value variation without overshoots.

  • PDF

Full Fuzzy-Logic-Based Vector Control for Permanent Magnet Synchronous Motors (영구자석 동기 모터를 위한 풀 퍼지 로직 기반 벡터제어)

  • Yu, Jae-Sung;Yoo, Young-Hwan;Won, Chung-Yuen;Lee, Byoung-Kuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.100-106
    • /
    • 2006
  • This paper proposes a full fuzzy-logic-based vector control for a permanent-magnet synchronous motor (PMSM). The high-performance of the proposed fuzzy logic control (FLC)-based PMSM drive are investigated and compared with the conventional proportional-integral (PI) controller at different conditions, such as step change in command speed and load and etc. In the experimental and simulation the FLC is employed in the speed and current controller. The experimental results show to be a suitable replacement of the conventional PI controller for the high-performance drive system.

Adaptive Control of Pitch Angle of Wind Turbine using a Novel Strategy for Management of Mechanical Energy Generated by Turbine in Different Wind Velocities

  • Hayatdavudi, Mahdi;Saeedimoghadam, Mojtaba;Nabavi, Seyed M.H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.863-871
    • /
    • 2013
  • Control of pitch angle of turbine blades is among the controlling methods in the wind turbines; this measure is taken for managing mechanical power generated by wind turbine in different wind velocities. Taking into account the high significance of the power generated by wind turbine and due to the fact that better performance of pitch angle is followed by better quality of turbine-generated power, it is therefore crucially important to optimize the performance of this controller. In the current paper, a PI controller is primarily used to control the pitch angle, and then another controller is designed and replaces PI controller through applying a new strategy i.e. alternating two ADALINE neural networks. According to simulation results, performance of controlling system improves in terms of response speed, response ripple, and ultimately, steady tracing error. The highly significant feature of the proposed intelligent controller is the considerable stability against variations of wind velocity and system parameters.

Fuzzy Control for Performance Improvement of DC Motor Drive System (직류전동기 드라이브 시스템의 성능개선을 위한 퍼지제어)

  • 정동화
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.55-65
    • /
    • 1999
  • Fuzzy logic fuzzy set theory is recently getting increasing emphasis in process control applications. This paper describes application of fuzzy logic in a speed control system that uses a phase controlled bridge converter and a separately excited dc motor. The fuzzy control is used to linearize the transfer characteristics of the converter in discontinuous conduction mod occurring at light load and high speed. The fuzzy control is then extended to the current and speed control loops replacing the conventional PI control method. The control algorithms have been developed in detail and verified by simulation of a DC motor(DM) drive system. The simulation result indicates the superiority of fuzzy control over the conventional control methods. Fuzzy logic seems to have a lot of promise in the applications of power electronics.

  • PDF

Controller Design for a Nozzle-flapper Type Servo Valve with Electric Position Sensor

  • Istanto, Iwan;Lee, Ill-yeong;Huh, Jun-young;Lee, Hyun-cheol
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • The control performance of hydraulic systems is basically influenced by the performance of electrohydraulic servo valve incorporated in a hydraulic control system. In this study, a control design was proposed to improve the control performance of a servo valve with a non-contact eddy current type position sensor. A mathematical model for the valve was obtained through an experimental identification process. A PI-D control together with a feedforward (FF) control was applied to the valve. To further improve the dynamic response of the servo valve, an input shaping filter (ISF) was incorporated into the valve control system. Finally, the effectiveness of the proposed control system was verified experimentally.