• Title/Summary/Keyword: PFC converter

Search Result 391, Processing Time 0.028 seconds

Single-Phase Power Factor Correction(PFC) Converter Using the Variable gain (가변이득을 가지는 디지털제어 단상 역률보상회로)

  • Baek, J.W.;Shin, B.C.;Jeong, C.Y.;Lee, Y.W.;Yoo, D.W.;Kim, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.240-243
    • /
    • 2001
  • This paper presents the digital controller using variable gain for single-phase power factor correction (PFC) converter. Generally, the gain of inner current control loop in single-stage PFC converter has a constant magnitude. This is why input current is distorted under low input voltage. In particular, a digital controller has more time delay than an analog controller which degrades characteristics of control loop. So, it causes the problem that the gain of current control loop isn't increased enough. In addition, the oscillation happens in the peak value of the input voltage open loop PFC system gain changes according to ac input voltage. These aspects make the design of the digital PFC controller difficult. In this paper, the improved digital control method for single-phase power factor converter is presented. The variable gain according to input voltage and input current help to improve current shape. The 800W converter is manufactured to verify the proposed control method.

  • PDF

Design and Implementation of a Control System for the Interleaved Boost PFC Converter in On-Board Battery Chargers (차량 탑재형 배터리 충전기의 인터리브드 부스트 PFC 컨버터 제어시스템 설계 및 구현)

  • Lee, Jun Hyok;Jung, Kwang-Soon;Lee, Kyung-Jung;Jung, Jae Yeop;Kim, Ho Kyung;Hong, Sung-Soo;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.843-850
    • /
    • 2016
  • In this paper, we propose a digital controller design process for the interleaved type of a boost PFC (Power Factor Correction) converter which can disperse the heat of the switching devices due to the interleaved topology. We establish a mathematical model of a boost PFC converter and propose a controller design method based on the root locus. The performance of the designed controller is verified by simulations. The measurement of the input voltage, inductor currents, and the converter output link voltage are needed for the control of the converter system which consists of a power unit and a control unit where a high-performance 32-bit microcontroller is used. The adjustment of A/D conversion timing is also needed to avoid high frequency noise generated when the switches on/off. It is illustrated by the real experiments that the designed control system with the properly adjusted ADC timing satisfies the given performance specifications of the interleaved boost PFC converter in the on-board slow battery charger.

A study on the characteristics of high power factor AC/DC converter with Feedforward control (Feedforward 제어에 의한 고역률 AC/DC 컨버터의 톡성분석)

  • Kim, Cherl-Jin;Jang, Jun-Young;Yoo, Byeong-Ku;Sin, Seung-Soo;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1244-1246
    • /
    • 2003
  • Conventional Switched Mode Power Supplies(SMPS) with diode-capacitor rectifier have distorted input current waveform with high harmonic content. Typically, these SMPS have a power factor lower than 0.65. To improve with this problem. the power factor correction(PFC) circuit of power supplies has to be introduced. Specially, to reduce size and manufacture cost of power conversion device, the single-stage PFC converter is increased to demand as necessary of study. In this case single-stage PFC converter has been used DC-DC converter with boost converter. However in this paper, it is studied flyback converter of high power factor, high efficiency by feedforward control. Also, the validity of designed and manufactured high power factor flyback converter is confirmed by simulation and experimental results.

  • PDF

Input Current Shaping in $S^4-PFC$ Converter with Auxiliary Switch ($S^4-PFC$ 에서 보조회로를 이용한 입력 전류 파형의 개선)

  • 이성백;김태웅;이장현
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.1
    • /
    • pp.82-88
    • /
    • 2000
  • In this paper, We present a low cost auxiliary circuit of $S^4-PFC$converter with the feedback winding, which can improve the input current waveform with the maintenance of limited DC Bus Voltage and high efficiency. The converter with feedback winding was analyzed to demonstrate the proposed converter. Int order to verify the performance of the proposed converter, we designed the converter which operates at the output of 5[V], 65[W] and switching frequency of 100[kHz] within the universal line voltage. Implemented converter has decreased line current peak value by 50[%] compared with the conventional converters and the power utilization was increased in the line period.

  • PDF

A Study on high efficiency Bridgeless PFC Converter applied SiC SBD (SiC SBD 적용한 고효율 Bridgeless PFC 컨버터에 대한 연구)

  • Jeon, Joon-Hyeok;Kim, Hyung-Sik;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.449-455
    • /
    • 2019
  • This paper proposes a flyback diode of bridgeless PFC converter as SiC SBD (Schottky Barrier Diode) to achieve high efficiency. In addition, through the explanation of the operation principle of the bridgeless PFC converter, the conduction section of the freewheel diode is shown in the bridgeless PFC converter to verify the contribution of system loss due to the loss of the freewheel diode. The advantages of the SiC SBD device's physical properties and the reverse recovery characteristics are explained, and the efficiency is measured by measuring the turn-on and turn-off losses. The loss was calculated. The simulation results were calculated in consideration of device characteristics and verified through the waveform analysis and comparison of the actual system. In order to consider the device characteristics, the simulation was conducted using the thermal module of PSIM. As a result of the prototype test, the turn-on loss was 0.608W and the turn-off loss was 21.62W, resulting in the total switching loss of 22.228W. The comparison of the two results proved the validity of the experimental method. In addition, a high efficiency of 94.58% is achieved.

New CCM Single Stage PFC Full Bridge Converter (새로운 CCM 단일 전력단 역률보상 풀 브리지 컨버터)

  • Lim, Chang-Seob;Kwon, Soon-Kurl;Cho, Jung-Goo;Song, Doo-Ik
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.986-989
    • /
    • 2002
  • This paper proposes a new single stage power factor correction (PFC) full bridge converter which operates at continuous conduction mode(CCM). The proposed single stage PFC consists of typical zero voltage switching(ZVS) full bridge DC/DC converter, two transformer auxiliary windings, and two small inductors, and two diodes. Neither additional active switch nor any control circuit are added for PFC resulting in very low cost. The proposed converter provides input power factor correction with CCM control and tight output voltage regulation. All switching devices are operated under ZVS with minimum voltage stress. Operation principle and analysis are explained and verified with computer simulation and experimental results on a 1.2kW, 100kHz prototype.

  • PDF

$S^4$-PFC AC/DC Converter To Reduce DC Bus Stress With Coupling Inductor ($S^4$-PFC에서 커플링 인덕터를 이용하여 DC 버스 스트레스를 저감시킨 AC/DC 컨버터)

  • Lee, Jang-Hyun;Kim, Tai-Woong;Lee, Sung-Palk
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2515-2517
    • /
    • 1999
  • In this paper we analysis DC bus voltage stress at high line voltage and light load in $S^4$-PFC Isolated AC/DC converter with DC bus voltage feedback using coupling in transformer. In this converter, the principle of operation and the practical problems in the design are considered. Simulation and experimental results are presented to verify the operation and performance of the $S^4$-PFC converter with DC bus voltage feedback. Experimental sets are performed in the conditions; switching frequency 100 kHz, output of 5 V, 60W, and universal line input voltage.

  • PDF

A Study on PFC of Active Clamp ZVS Flyback Converter (능동 클램프 ZVS 플라이백 컨버터의 역률개선에 관한 연구)

  • Choi T.Y.;Ahn J.J.;Ryu D.K.;Lee W.S.;Won C.Y.;Kim S.S.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.538-541
    • /
    • 2001
  • This paper analyzed PFC of active clamp ZVS flyback converter by adding two method PFC (Power Factor Correction) circuit - Two-Stage and Single-Stage. It improves on Flyback converter's disadvantage - loss increasing by switching, noise increasing, high voltage stress of switch - by adding active clamp circuit. Simulation results show to improve the input PF of 300W ZVS flyback converter by adding Single-Stage, Two-Stage PFC circuit.

  • PDF

Modulated Carrier Control for Interleaved Continuous Conduction Mode(CCM) Boost Power Factor Correction Converter

  • Kim, Hye-jin;Choi, Kyu-sik;Cho, B.H.;Choi, Hang-seok
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.195-196
    • /
    • 2012
  • In recent years, in an effort to improve the efficiency and the power density of the front-end power factor correction(PFC), the interleaving of multiple converter is employed. The conventional interleaved continuous conduction mode(CCM) boost PFC converter requires input and output voltage sensing and three current sensing to obtain current balancing between modules. In this paper, the interleaved CCM PFC converter based on modulated carrier control is proposed. With the proposed method, two phase interleaved PFC can be realized simply without line voltage sensing resistor and can achieve current balancing without additional current sensing resistor on common return path. The simulation studies are carried out to verify the effectiveness of the proposed control scheme.

  • PDF

A Study on OCC type PFC Converter for PSU of LCD TV (LCD TV의 전원장치를 위한 OCC 방식 PFC Converter에 관한 연구)

  • Kim, Min-Young;Yoon, Seong-Sik;Kim, Tae-Kue;Ahn, Ho-Kyun;Yoon, Tae-Sung;Kim, Sung-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1126-1127
    • /
    • 2007
  • This paper presents One Cycle Control type PFC converter for power system Unit of LCD TV. A control technique known as One Cycle Control contends reductions in complexity, cost, design time, and PCB real estate, without a sacrifice in performance. In this paper, design and experiment on 300W One Cycle Control type PFC Converter for Power System Unit of LCD TV.

  • PDF