• Title/Summary/Keyword: PFC converter

Search Result 391, Processing Time 0.034 seconds

Analysis and Design of Interleaved Boost Power Factor Corrector on Two Stage AC/DC PFC Converter (2단 역률보상회로를 구성하는 Interleaved 승압형 컨버터의 해석 및 설계)

  • 허태원;손영대;김동완;김춘삼;박한석;우정인
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.343-351
    • /
    • 2003
  • In this paper, interleaved boost converter is applied as a first-stage converter in switch mode power supply. The first-stage converter plays a role to improve power factor. Interleaved Boost Power Factor Corrector(IBPFC) can reduce input current ripple as a single voltage control loop only without inner current loop, because input current is divided each 50% by two switching devices. Each converter cell is also operated in discontinuous current mode and inductor current of each converter is discontinuous. Total input current which is composed by each converter cell is continuous current. Thus, IBPFC is able to improve input current ripple. IBPFC operating in discontinuous current mode can be classified as six modes from switching state and be carried out state space averaging small signal modeling. A control transfer function is obtained according to the modeling. Not only steady-state characteristics but also dynamic characteristics is considered. Single voltage control loop is also constructed by the control transfer function. From experimental result, improvement of power factor and input current ripple are verified.

Bridgeless High Efficiency ZVZCS Power Factor Correction Circuit for PDP Power Module (PDP용 브리지가 없는 고효율 ZVZCS 역률개선회로)

  • Cho Kyu-Min;Yu Byung-Gyu;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.704-708
    • /
    • 2004
  • Recently, many nation have released standard such as IEC 61000-3-2 and IEEE 59, which impose a limit on the harmonic current drawn by equipment connected to AC line in order to prevent the distortion of an AC Line. Therefore, Plasma Display Panel (PDP) which is highlightened in digital display device also has the Power Factor Correction (PFC) circuit to meet the harmonic requirements. In PDP power module, the conventional boost converter is usually used for the PFC circuit. However, it comes serious thermal problem on it's bridge diode due to heat of PDP, and therefore the system stability is not guaranteed. In this paper, the bridgeless boost converter, which is used for PFC circuit of the PDP power module, is designed and verified the possibility of the application in a practical product in a view of efficiency, component count, temperature and etc.

  • PDF

Comparative Analysis of Single stage Power Factor Correction Circuit (단상 전원에 적용되는 수동 및 능동 역률개선회로의 특성)

  • Kim, Cherl-Jin;Kim, Choong-Sik;Yoo, Byeong-Kyu;Yoon, Shin-Yong;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.166-168
    • /
    • 2004
  • Conventional Switched Mode Power Supplies(SMPS) with diode-capacitor rectifier have distorted input current waveform with high harmonic order contents. Typically, these SMPS have a power factor lower than 0,7. To improve with this problem the power factor correction(PFC) circuit of power supplies has to be introduced. Specially, to the reduce size and manufacture cost of power conversion device, the single-stage PFC converter is increased to demand as necessary of study. In this paper, comparative analysis of Valley-fill, boost and feedforward type single stage power factor correction circuit based on the flyback converter is given. Also, the validity of designed three type of single stage PFC circuit are confirmed by simulation and experimental results.

  • PDF

A Study on the 1kW class Boost Converter for PFC using a MPP core (금속분말 코어를 이용한 1kW급 PFC용 Boost 컨버터에 관한 연구)

  • Ju Jeong-Kyu;Ahn Tae-Young;Jang Pyung-Woo;Jeong In-Bum;Choi Gwang-Bo
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.781-783
    • /
    • 2002
  • In this paper, the experiment results of the Boost converter for PFC(power factor correction) are presented. The performance of the 1kW class PFC rectifier with the average current mode control are evaluated. A 1kW, 100kHz system prototype was built and experimental results are presented to verify the design. As a results, power conversion efficiency above $95\%$ and power factor above $99\%$ were obtained.

  • PDF

Power factor improvement of LED driver using Valley-fill circuit and a Boosting Inductor (밸리 필 회로 및 부스팅 인덕터를 이용한 LED 구동회로의 역률 개선)

  • Park, Chong-Yeun;Lee, Hak-Beom;Yoo, Jin-Wan
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.103-107
    • /
    • 2011
  • In this paper, a method is proposed to improve power factor and the input current THD in LED driver circuit. The researched circuit consists of a valley-fill circuit and boosting inductor and a Buck converter. Valley-fill circuit is a passive PFC and simplified structure, the buck converter is operated with current feedback. The switching frequency is 50KHz in LED driver circuit and LED forward current is constant. A valley-fill type PFC circuit for LED driver(15Watt) has been implemented, and the validity of proposed method is shown by is simulation and experimental result.

  • PDF

Improved Input Voltage Sensorless Control of Three-Phase AC/DC PWM PFC Converter using Virtual Flux Observer (가상자속관측기를 이용한 3상 AC/DC PWM PFC 컨버터의 입력전압 센서리스 제어 개선)

  • Kim, Young-Sam;So, Sang-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.566-574
    • /
    • 2013
  • In this paper, direct power control system for three-phase PFC AC/DC converter without the source voltage sensors is proposed. The sinusoidal input current and unity effective power factor are realised based on the estimated flux in the observer. Both active and reactive power calculated using estimated flux. The estimation of flux is performed based on the reduced-order virtual flux observer using the actual currents and the command control voltage. Moreover, source voltage sensors are replaced by a estimated flux. DC output voltage has been compensated by DC output ripple voltage estimation algorithm. The active and reactive powers estimation are performed based on the estimated flux and Phase angle. The proposed algorithm is verified through simulation and experiment.

Switching Noise Reduction of 3-Phase PFC SVPWM Boost Converter (SVPWM을 이용한 3상 PFC 승압형 컨버터의 노이즈에 관한 연구)

  • Kim, Y.S.;Kim, K.T.;Park, S.J.;Hahn, J.H.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.193-195
    • /
    • 2004
  • 최근, 전력 품질에 관한 중요성과 고조파에 관한 규정이 강화되면서 다양한 PFC 컨버터에 관한 연구가 많이 이루어지고 있다. PFC PWM 컨버터는 스위칭 소자를 사용하여 전원전압과 동일한 위상의 전류를 인가함으로써 고효율, 고역률을 얻을 수 있다. 그러나 스위칭의 증가로 스위칭 손실이 커지는 단점을 가지며, 스위칭 노이즈는 컨버터의 안정 운전에 장애가 된다. 본 논문은 3상 PFC SVPWM 승압형 컨버터의 스위칭 노이즈에 관한 실험적 검토를 수행한 연구이다. 본 논문에서 3상 PFC SVPWM 승압형 컨버터를 구성하여 시뮬레이션 및 실험을 수행한 결과, 단위역률이 잘 수행되었으며, 스위칭 노이즈 분석을 위하여 스너버 회로의 구성소자에 따른 노이즈 실험 결과를 제시하였다.

  • PDF

Efficiency improvement of PFC boost converter by reduction of inductor winding loss (인덕터의 권선손실 저감을 통한 PFC 승압 컨버터의 효율개선)

  • Seo, Eun-Sung;Choi, Seung-Bin;Liang, Dong;Shin, Hwi-Beom
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.303-304
    • /
    • 2015
  • 본 논문에서는 CCM에서 동작하는 PFC 인덕터의 AC 권선 손실에 대하여 분석하고, PFC 승압 컨버터의 효율을 개선하기 위해 인덕터의 AC 권선손실을 저감하는 방법을 제안한다. 제안한 방법은 기존의 단일선 대신 Litz선을 사용하고, 권선의 DC 저항 및 인덕터의 창면적을 고려하여 권선을 설계한다. 제안한 방법을 적용한 인덕터와 기존의 인덕터를 PFC 승압 컨버터에 적용하여 실험적으로 손실을 비교함으로써 PFC 승압 컨버터의 효율이 개선되었음을 보인다.

  • PDF

Input Impedance and Current Feedforward Control of Single-Phase Boost PFC Converters

  • Park, Sungmin;Park, Sung-Yeul;Bazzi, Ali M.
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.577-586
    • /
    • 2015
  • The combination of voltage feedforward and feedback control is a conventional approach for correcting the power factor in single-phase ac-dc boost converters. The feedback duty ratio increases significantly with an increase of the line frequency and input inductance. Therefore, the performance of the conventional approach is highly dependent on the bandwidth of the feedback controller. As a result, the input power quality can be significantly exacerbated due to uncompensated duty ratios if the feedback controller is limited. This paper proposes an input impedance and current feedforward control method to reduce the control portion of the feedback controller. The findings in this paper are 1) the theoretical derivation and analysis of variations of line frequency and input inductance on a power factor correction approach, 2) guaranteed consistent performance in a wide range of conditions, and 3) that a low switching frequency can be utilized by the proposed method. A MATLAB/Simulink model and a 1.2kW dual boost converter are built to demonstrate the effectiveness of the proposed method.