• Title/Summary/Keyword: PENDULUM

Search Result 943, Processing Time 0.033 seconds

Driving of Inverted Pendulum Robot Using Wheel Rolling Motion (바퀴구름운동을 고려한 역진자 로봇의 주행)

  • Lee, Jun-Ho;Park, Chi-Sung;Hwang, Jong-Myung;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.110-119
    • /
    • 2010
  • This paper aims to add the autonomous driving capability to the inverted pendulum system which maintains the inverted pendulum upright stably. For the autonomous driving from the starting position to the goal position, the motion control algorithm is proposed based on the dynamics of the inverted pendulum robot. To derive the dynamic model of the inverted pendulum robot, a three dimensional robot coordinate is defined and the velocity jacobian is newly derived. With the analysis of the wheel rolling motion, the dynamics of inverted pendulum robot are derived and used for the motion control algorithm. To maintain the balance of the inverted pendulum, the autonomous driving strategy is derived step by step considering the acceleration, constant velocity and deceleration states simultaneously. The driving experiments of inverted pendulum robot are performed while maintaining the balance of the inverted pendulum. For reading the positions of the inverted pendulum and wheels, only the encoders are utilized to make the system cheap and reliable. Even though the derived dynamics works for the slanted surface, the experiments are carried out in the standardized flat ground using the inverted pendulum robot in this paper. The experimental data for the wheel rolling and inverted pendulum motions are demonstrated for the straight line motion from a start position to the goal position.

Development of a Pendulum-driven Type Spherical Mobile Robot (진자 구동 방식의 구형 이동 로봇 개발)

  • Kim, Ja-Young;Kwon, Hyok-Jo;Kim, Dae-Hyun;Choi, Hee-Byoung;Lee, Ji-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.124-126
    • /
    • 2009
  • In this paper a pendulum-driven type spherical mobile robot is introduced. Many researchers have been studied about a spherical mobile robot. we developed a pendulum-driven type spherical mobile robot and analyzed mechanism of pendulum motion. Mechanism of pendulum motion applied to the robot. Consequently, we could verify the motion of the robot as motion of pendulum.

  • PDF

Probabilistic analysis of seismically isolated elevated liquid storage tank using multi-phase friction bearing

  • Moeindarbari, Hesamaldin;Malekzadeh, Masoud;Taghikhany, Touraj
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.111-125
    • /
    • 2014
  • Multiple level performance of seismically isolated elevated storage tank isolated with multi-phase friction pendulum bearing is investigated under totally 60 records developed for multiple level seismic hazard analysis (SLE, DBE and MCE). Mathematical formulations involving complex time history analysis have been proposed for analysis of typical storage tank by multi-phase friction pendulum bearing. Multi-phase friction pendulum bearing represent a new generation of adaptive friction isolation system to control super-structure demand in different hazard levels. This isolator incorporates four concave surfaces and three independent pendulum mechanisms. Pendulum stages can be set to address specific response criteria for moderate, severe and very severe events. The advantages of a Triple Pendulum Bearing for seismic isolation of elevated storage tanks are explored. To study seismic performance of isolated elevated storage tank with multi-phase friction pendulum, analytical simulations were performed with different friction coefficients, pendulum radii and slider displacement capacities.

Experimental Studies on Decentralized Neural Networks Using Reference Compensation Technique For Controlling 2-DOF Inverted Pendulum Based on Velocity Estimation (속도추정 기반의 2자유도 도립진자의 안정화를 위한 입력보상 방식의 분산 신경망 제어기에 관한 실험적 연구)

  • Cho, Hyun-Taek;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.341-349
    • /
    • 2004
  • In this paper, the decentralized neural network control of the reference compensation technique is proposed to control a 2-DOF inverted pendulum on an x-y plane. The cart with the 2-DOF inverted pendulum moves on the x-y plane and the 2-DOF inverted pendulum rotates freely on the x-y axis. Since the 2-DOF inverted pendulum is divided into two 1-DOF inverted pendulums, the decentralized neural network control is applied not only to balance the angle of pendulum, but also to control the position tracking of the cart. Especially, a circular trajectory tracking is tested for position tracking control of the cart while maintaining the angle of the pendulum. Experimental results show that position control of the inverted pendulum system is successful.

Experimental Studies of Swing Up and Balancing Control of an Inverted Pendulum System Using Intelligent Algorithms Aimed at Advanced Control Education

  • Ahn, Jaekook;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.200-208
    • /
    • 2014
  • This paper presents the control of an inverted pendulum system using intelligent algorithms, such as fuzzy logic and neural networks, for advanced control education. The swing up balancing control of the inverted pendulum system was performed using fuzzy logic. Because the switching time from swing to standing motion is important for successful balancing, the fuzzy control method was employed to regulate the energy associated with the angular velocity required for the pendulum to be in an upright position. When the inverted pendulum arrived within a range of angles found experimentally, the control was switched from fuzzy to proportional-integral-derivative control to balance the inverted pendulum. When the pendulum was balancing, a joystick was used to command the desired position for the pendulum to follow. Experimental results demonstrated the performance of the two intelligent control methods.

The Control of Inverted Pendulum for PID Controller (PID 제어기를 이용한 도립진자 제어)

  • 송해석;장갑부;노태정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.124-124
    • /
    • 2000
  • In this paper, The PID controller for stabilization of an inverted pendulum system is proposed. The PR control rule is very common in control systems. It is the basic tool for solving most process control problem. We consider the inverted pendulum system containing two PID controllers. The first controls the angle of the pendulum. The second is used to control the position of the cart. We can show stabilization of the PID controller through simulation of the inverted pendulum system.

  • PDF

Using Fuzzy Controller and Observer for Inverted Pendulum Control (퍼지제어기와 상태관측기에 의한 도림진자제어)

  • 임태우;이종석;최용선;안태천
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.328-328
    • /
    • 2000
  • In this paper, An inverted pendulum system is typical of a nonlinear model. We propose a stable the inverted pendulum with fuzzy controller and state observer of nonlinear system. we represent the fuzzy system as a Takagj-Sugeno fuzzy model in addition, full-order state observer of inverted pendulum. As the result show fuzzy controller of inverted pendulum with nonlinear model of full-order state observer.

  • PDF

KisBot II : New Spherical Robot with Curved Two-pendulum Driving Mechanism (두 개의 곡선형 펜들럼 주행 메커니즘을 갖는 구형로봇)

  • Yoon, Joong-Cheol;Ahn, Sung-Su;Lee, Yun-Jung
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.4
    • /
    • pp.323-333
    • /
    • 2011
  • Due to the limited pendulum motion range, the conventional one-pendulum driven spherical robot has limited driving capability. Especially it can not drive parallel direction with center horizontal axis to which pendulum is attached from stationary state. To overcome the limited driving capability of one-pendulum driven spherical robot, we introduce a spherical robot, called KisBot II, with a new type of curved two-pendulum driving mechanism. A cross-shape frame of the robot is located horizontally in the center of the robot. The main axis of the frame is connected to the outer shell, and each curved pendulum is connected to the end of the other axis of the frame respectively. The main axis and pendulums can rotate 360 degrees inside the sphere orthogonally without interfering with each other, also the two pendulums can rotate identically or independent of each other. Due to this driving mechanism, KisBot II has various motion generation abilities, including a fast steering, turning capability in place and during travelling, and four directions including forward, backward, left, and right from stationary status. Experiments for several motions verify the driving efficiency of the proposed spherical robot.

Hybrid PD-Servo State Feedback Control Algorithm for Swing up Inverted Pendulum System

  • Nundrakwang, Songmoung;Benjanarasuth, Taworn;Ngamwiwit, Jongkol;Komine, Noriyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.690-693
    • /
    • 2005
  • In this paper, a hybrid PD-servo state feedback control algorithm for swing up inverted pendulum system is proposed. It consists of two parts. The first part is the PD position control for swinging up the pendulum from the natural pendent position to around the upright position and the second part is the servo state feedback control for stabilizing the inverted pendulum in upright position. The first controller is PD controller and it is tuned to control the position of the pendulum by moving the cart back and forth until the pendulum swings up around the upright position. Then the second controller will be switched to stabilize the inverted pendulum in its upright position. The controller in this stage is the servo state feedback controller designed by pole placement. Experimental results of PD type swinging up control system, of stabilizing servo state feedback control system and of the proposed hybrid PD-servo state feedback control system to swing up and stabilize inverted pendulum show that the proposed method is effective and reliable for actual implementation while it is simple.

  • PDF

Availability of the Pendulum Test Using NK Table for Spasticity Measurement of Low Extremity (하지 강직 평가에 있어 NK테이블을 이용한 진자검사의 유용성)

  • Kim, Yong-Wook;Weon, Jong-Hyuck;Kim, Tae-Ho
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.2
    • /
    • pp.209-217
    • /
    • 2013
  • PURPOSE: The purpose of this study was to investigate the clinical availability of the pendulum test (through reliability and validity) using a NK table attached electrogoniometer for spasticity measurement in patients with brain lesions. METHODS: Thirty-one stroke and traumatic brain injury subjects participated in the study. Intraclass correlation coefficient (ICC) was used to verify the test-retest reliability of spasticity measures of the pendulum test. Pearson's product correlation coefficient was used to examine the validity of the pendulum test through the amplitude of the deep tendon reflex (DTR) test known for objective and quantitative measure of spasticity. RESULTS: In these results, the test-retest reliability was showed significantly high correlation between pendulum tests (ICCs=.95~.97, p<.01). There were significant negative correlations between the amplitude of the DTR test and all measures of spasticity of the pendulum test(r=-.77~-.85, p<.01). CONCLUSION: Thus, it is possible to use the pendulum test using a NK table as an objective measure of spasticity, rather than other expensive equipment, which is more complicated to use. Further studies are needed to explore the therapeutic effects of spasticity using a newly designed pendulum test equipment in this study.