• Title/Summary/Keyword: PEG Additive

Search Result 36, Processing Time 0.02 seconds

Moisturization and Transdermal Penetration Characteristics of PEGimpregnated Aloe vera Gel from DIS Processing (DIS에 의한 Polyethylene Glycol 함침 알로에 베라 겔의 보습 및 경피흡수 특성)

  • Kwon, Hye Mi;Hur, Won;Lee, Shin Young
    • KSBB Journal
    • /
    • v.28 no.5
    • /
    • pp.319-326
    • /
    • 2013
  • This study was carried out to investigate the in vitro and in vivo moisturizing properties and percutaneous absorption of PEG-impregnated Aloe vera gel. The PEG-i-Aloe gel was obtained from dewatering and impregnation by soaking (DIS) of Aloe vera leaf slice. The moisturizing property of the obtained sample was evaluated by moisture determination using gravimetric method in desiccator under different RH% and by water sorption-desorption test on human skin. The transdermal penetration characteristics of PEG-i-Aloe gel was investigated by Franz diffusion cell in vitro transdermal absorption method. PEG-i-Aloe gel had high moisture retention ability and could significantly lead the enhancing skin hydration status as well as reducing the skin water loss due to the film formation as a skin barrier. The skin penetration rate of PEGi- Aloe gel at steady state was 9.76 ${\mu}g/(h{\cdot}cm^2)$ and the quantity of the transdermal absorption was 144 ${\mu}g/cm^2$ in 9 hr. The penetration mechanism was well fitted with Higuchi model ($R^2$ = 0.974-0.994). The results show that PEG-i-Aloe gel has the significant moisturizing effect and strong penetration of the animal skin. It could be used as the moisturizing additive in cosmetic skin products.

Water desalination by membrane distillation using PVDF-HFP hollow fiber membranes

  • Garcia-Payo, M.C.;Essalhi, M.;Khayet, M.;Garcia-Fernandez, L.;Charfi, K.;Arafat, H.
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.215-230
    • /
    • 2010
  • Poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP, hollow fiber membranes were prepared by the dry/wet spinning technique using different polyethylene glycol (PEG) concentrations as non-solvent additive in the dope solution. Two different PEG concentrations (3 and 5 wt.%). The morphology and structural characteristics of the hollow fiber membranes were studied by means of optical microscopy, scanning electron microscopy, atomic force microscopy (AFM) and void volume fraction. The experimental permeate flux and the salt (NaCl) rejection factor were determined using direct contact membrane distillation (DCMD) process. An increase of the PEG content in the spinning solution resulted in a faster coagulation of the PVDF-HFP copolymer and a transition of the cross-section internal layer structure from a sponge-type structure to a finger-type structure. Pore size, nodule size and roughness parameters of both the internal and external hollow fiber surfaces were determined by AFM. It was observed that both the pore size and roughness of the internal surface of the hollow fibers enhanced with increasing the PEG concentration, whereas no change was observed at the outer surface. The void volume fraction increased with the increase of the PEG content in the spinning solution resulting in a higher DCMD flux and a smaller salt rejection factor.

Polymeric Additive Influence on the Structure and Gas Separation Performance of High-Molecular-Weight PEO Blend Membranes (고분자량 PEO 기반 분리막에 대한 다양한 고분자 첨가제의 영향 분석)

  • Hyo Jun Min;Young Jae Son;Jong Hak Kim
    • Membrane Journal
    • /
    • v.34 no.3
    • /
    • pp.192-203
    • /
    • 2024
  • The advancement of commercially viable gas separation membranes plays a pivotal role in improving CO2 separation efficiency. High-molecular-weight poly(ethylene oxide) (high-Mw PEO) emerges as a promising option due to its high CO2 solubility, affordability, and robust mechanical attributes. However, the crystalline nature of high-Mw PEO hinders its application in gas separation membranes. This study proposes a straightforward blending approach by incorporating various polymeric additives into high-Mw PEO to address this challenge. Four commercially available, water-soluble polymers, i.e. poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), poly(acrylic acid) (PAA), and poly(vinyl pyrrolidone) (PVP) are examined as additives to enhance membrane performance by improving miscibility and reducing PEO crystallinity. Contrary to expectations, PEG and PPG fail to inhibit the crystalline structure of PEO and result in membrane flaws. Conversely, PAA and PVP demonstrate greater success in altering the crystal structure of PEO, yielding defect-free membranes. A thorough investigation delves into the correlation between changes in the crystalline structure of high-Mw PEO blend membranes and their gas separation performance. Drawing from our findings and previously documented outcomes, we offer insights into designing and selecting additive polymers for high-Mw PEO, aiming at the creation of cost-effective, commercially viable CO2 separation membranes.

Preparation of PVDF/PEI double-layer composite hollow fiber membranes for enhancing tensile strength of PVDF membranes

  • Yuan, Jun-Gui;Shi, Bao-Li;Ji, Ling-Yun
    • Membrane and Water Treatment
    • /
    • v.5 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • Polyvinylidene fluoride (PVDF) hollow fiber membrane is widely used for water treatment. However, the weak mechanical strength of PVDF limits its application. To enhance its tensile strength, a double-layer composite hollow fiber membrane, with PVDF and polyetherimide as the external and inner layers, respectively, was successfully prepared through phase inversion technique. The effects of additive content, air gap distance, N,N-dimethyl-acetamide content in the inner core liquid, and the temperature of external coagulation bath on the membrane structure, permeation flux, rejection, tensile strength, and porosity were determined. Experimental results showed that the optimum preparation conditions for the double-layer composite hollow fiber membrane were as follows: PEG-400 and PEG-600, 5 wt%; air gap distance, 10 cm; inner core liquid and the external coagulation bath should be water; and temperature of the external coagulation bath, 40 C. A single layer PVDF hollow fiber membrane (without PEI layer) was also prepared under optimum conditions. The double-layer composite membrane remarkably improved the tensile strength compared with the single-layer PVDF hollow fiber membrane. The permeation flux, rejection, and porosity were also slightly enhanced. High-tensile strength hollow fiber PVDF ultrafiltration membrane can be fabricated using the proposed technique.

Copper Via Filling Using Organic Additives and Wave Current Electroplating (유기물 첨가제와 펄스-역펄스 전착법을 이용한 구리 Via Filling에 관한 연구)

  • Lee, Suk-Ei;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.37-42
    • /
    • 2007
  • Copper deposition studies have been actively studied since interests on 3D SiP were increased. The defects inside via can be easily formed due to the current density differences on entrance, bottom and wall of via. So far many different additives and current types were discussed and optimized to obtain void-free copper via filling. In this research acid cupric sulfate plating bath containing additives such as PEG, SPS, JGB, PEI and wave current applied electroplating were examined. The size and shape of grain were influenced by the types of organic additives. The cross section of specimen were analyzed by FESEM. When PEI was added, the denser copper deposits were obtained. Electroplaing time was reduced when 2 step via filling was employed.

  • PDF

Preparation and Evaluation of Sustained-Release $Eudragit^{\circledR}$ Microcapsules Containing ${\beta}-Lactam$ Antibiotics ($Eudragit^{\circledR}$ 마이크로캅셀화에 의한 ${\beta}$-락탐계 항생물질의 방출제어제제 개발)

  • Han, Kun;Shin, Do-Su;Jee, Ung-Kil;Chung, Youn-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.4
    • /
    • pp.267-279
    • /
    • 1992
  • Microencapsulations of amoxicillin and cephalexin, using Eudragit RS, RL, E, S and L were investigated. The microcapsules were prepared by the solvent evaporation process in liquid paraffin phase, which is based on dispersion of acetone/isopropanol containing the drug in liquid paraffin. Aluminium tristearate was used as an additive for the preparation of microcapsules. The size distribution, dissolution test and observation by SEM were examined. Good reproducibility in microcapsule preparation was observed. The microcapsules obtained were spherical and free-flowing particles. The dissolution rates of amoxicillin and cephalexin from the microcapsules were considerably decreased as compared with those from amoxicillin and cephalexin powder, respectively. As the dispersing agents (aluminium tristearate) increased, the particle size of microcapsules decreased and the dissolution rate increased. In order to control the release rate of drugs, microcapsules were prepared by mixing Eudragit RS/RL or Eudragit S/L. As Eudragit RL ratio in microcapsule of Eudragit RS/RL increased, the dissolution rate increased. As Eudragit L ratio in microcapsule of Eudragit S/L increased, the dissolution rate increased. Furthermore, the release rates of drugs from Eudragit RS/L or RS/polyelthylene glycol 1540 (PEG 1540) were examined. The dissolution rate of drugs increased with increasing of Eudragit L or PEG 1540 ratio. In conclusion, the release rates of drugs from Eudragit RS/RL or RS/PEG 1540 microcapsule could be controlled, and these microcapsules will be convenient for reducing frequency of administration.

  • PDF

Effect of Additives on the Hardness of Copper Electrodeposits in Acidic Sulfate Electrolyte (황산구리 전착에서의 첨가제가 구리전착층의 경도에 미치는 영향)

  • Min, Sung-Ki;Lee, Jeong-Ja;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.143-150
    • /
    • 2011
  • Copper electroplating has been applied to various fields such as decorative plating and through-hole plating. Technical realization of high strength copper preplating for wear-resistant tools and molds in addition to these applications is the aim of this work. Brighters and levelers, such as MPSA, Gelatin, Thiourea, PEG and JGB, were added in copper sulfate electrolyte, and the effects of these organic additives on the hardness were evaluated. All additives in this work were effective in increasing the hardness of copper electrodeposits. Thiourea increased the hardness up to 350 VHN, and was the most effective accelarator in sulfate electrolyte. It was shown from the X-ray diffraction analysis that preferred orientation changed from (200) to (111) with increasing concentration of organic additives. Crystallite size decreased with increasing concentration of additive. Hardness was increased with decreasing crystallite size, and this result is consistent with Hall-Petch relationship, and it was apparent that the hardening of copper electrodeposits results from the grain refining effect.

Effect of Non-ionic Additive on Morphology and Gas Permeation Properties of Polysulfone Hollow Fiber Membrane (비이온계 첨가제에 의한 폴리술폰계 중공사 막의 모폴로지 조절과 기체투과 특성)

  • Lee, Hye Jin;Koh, Mi Jin;Kim, Duek Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.224-233
    • /
    • 2012
  • To improve permeation performance of gas separation membrane, polysulfone hollow fiber membrane was prepared by wet-dry phase inversion method using Triton X-100 as non-ionic additive. And variation of gas permeation behavior by additive was investigated. Various spinning conditions such as air gap, concentration of polymer, dope tank temperature were controlled and these effects were studied. The morphology and gas permeation property of hollow fiber membranes were investigated using scanning electron microscope (SEM) and bubble flow meter respectively. We confirmed that the membranes added with Triton X-100 had a smooth external skin at various air gap length conditions. The macrovoids of these hollow fiber membranes were more developed with increase of air-gap from 4 to 90 cm and that induced higher permeance. The permeance of polysulfone membranes has the higher value at comparatively lower concentration polymer (30 wt% polysulfone) and lower concentration of additive (15 wt% Triton X-100). When temperature in dope tank was controlled, the membranes prepared at $100^{\circ}C$ showed low permeance because of volatilization of additive and solvent.

Comparative Analysis of Dissolution and Refolding Processes for Inclusion Body Protein Renaturation (내포체 단백질 재생을 위한 용해 및 재접힘공정의 비교분석)

  • 김창성;김윤하;이은규
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.133-140
    • /
    • 1998
  • Using rlFN-$\alpha$ and rhGH as the model proteins, the refolding performances of the published processes were evaluated and compared. Key engineering parameters such as the type of denaturant and this concentration, protein concentration in the refolding buffer, and pH and ionic strength of the buffer were experimentally investigated. Furthermore, the role of a co-solvent of surfactant type in aggregation reduction was also studied. Of the denaturants tested (8M urea, 6M guanidine HCI, 0.5% SDS), SDS at alkaline pH (9.5) and ambient temperature gave the highest recovery yield. The SDS process was effective in the refolding of observed where dissolution proceeded better under lower strength (10 mM) but aggregation was suppressed under higher strength (>50 mM.) When PEG-4000 and/or Tween were added as co-solvent or refolding-enhancing additive, 1.6-2 times higher yield was realized. The‘masking’of the hyrophobic patches located on the surface of the protein with the surfactant molecules was believed to be responsible for the considerable reduction in aggregation during refolding.

  • PDF

Preparation of Asymmetric Membranes by Addition of Nonsolvent (비용매 첨가제를 이용한 비대칭막의 제조)

  • Kim, Nowon
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.32-41
    • /
    • 2015
  • High performance polysulfone microfiltration membranes with a high were successfully prepared by vapor induced phase separation (VIPS) coupled with non-solvent induced phase separation (NIPS) process. Asymmetric Membranes were prepared with PSF/DMF/PVP/PEG/DMSO/water mixed solutions and water/IPA coagulant. PSF, DMF, PVP, PEG, DMSO, water was used as a membrane polymer, a solvent, a hydrophilic polymer additive, a polar protic liquid polymer, a polar aprotic nonsolvent, and a polar protic nonsolvent in the casting solution, respectively. The addition of polar aprotic nonsolvents, and polar protic nonsolvents is a convenient and effective method to control membrane structure. In order to control the morphology of polymeric membranes, the spontaneous emulsification induced by drawing water vapor into the exposed casting solution surface has been used. Control of the internal morphology of polymeric membranes by using mixed coagulation solution such as water and IPA is discussed in the present work. The pure water permeability, pore size distribution, surface hydrophilicity and membrane morphology were investigated. Due to the addition of DMSO to casting solution, the mean pore size increased almost $0.2{\mu}m$ and the water flux increased about 1000-1800 LMH.