DOI QR코드

DOI QR Code

Polymeric Additive Influence on the Structure and Gas Separation Performance of High-Molecular-Weight PEO Blend Membranes

고분자량 PEO 기반 분리막에 대한 다양한 고분자 첨가제의 영향 분석

  • Hyo Jun Min (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Young Jae Son (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Jong Hak Kim (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 민효준 (연세대학교 화공생명공학과) ;
  • 손영재 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2024.05.01
  • Accepted : 2024.06.07
  • Published : 2024.06.30

Abstract

The advancement of commercially viable gas separation membranes plays a pivotal role in improving CO2 separation efficiency. High-molecular-weight poly(ethylene oxide) (high-Mw PEO) emerges as a promising option due to its high CO2 solubility, affordability, and robust mechanical attributes. However, the crystalline nature of high-Mw PEO hinders its application in gas separation membranes. This study proposes a straightforward blending approach by incorporating various polymeric additives into high-Mw PEO to address this challenge. Four commercially available, water-soluble polymers, i.e. poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), poly(acrylic acid) (PAA), and poly(vinyl pyrrolidone) (PVP) are examined as additives to enhance membrane performance by improving miscibility and reducing PEO crystallinity. Contrary to expectations, PEG and PPG fail to inhibit the crystalline structure of PEO and result in membrane flaws. Conversely, PAA and PVP demonstrate greater success in altering the crystal structure of PEO, yielding defect-free membranes. A thorough investigation delves into the correlation between changes in the crystalline structure of high-Mw PEO blend membranes and their gas separation performance. Drawing from our findings and previously documented outcomes, we offer insights into designing and selecting additive polymers for high-Mw PEO, aiming at the creation of cost-effective, commercially viable CO2 separation membranes.

기체 분리막의 상업적 발전은 CO2 분리 효율을 향상시키는 데 중요한 역할을 한다. 고분자량 PEO (high-Mw PEO)는 높은 CO2 용해도, 가격 경쟁성 및 견고한 기계적 특성을 가져 분리막 제조용 고분자로 유력하지만 그 특유의 결정성으로 인해 기체 분리막에 응용이 어렵다. 본 연구에서는 결정성 감소를 위해 다양한 고분자 첨가제를 고분자량 PEO에 혼합하는 방법을 제시하였다. 폴리에틸렌글리콜(PEG), 폴리프로필렌글리콜(PPG), 폴리아크릴산(PAA) 및 폴리비닐피롤리돈(PVP)과 같은 상업적으로 이용 가능하고 섞임성이 좋은 수용성 고분자를 첨가제로 사용하여 PEO 결정성을 감소시킴으로써 가스 분리 성능을 향상시키고자 하였다. PEG 및 PPG의 경우 PEO의 결정 구조를 억제하지 못하고 분리막의 결함을 초래하였으나, PAA 및 PVP는 PEO의 결정 구조를 바꿔 결함이 없는 분리막을 제조하는 데 성공하였다. 고분자량 PEO 혼합막의 결정 구조 변화와 기체 분리 성능의 상관관계를 조사하여 본 연구의 결과와 이전에 기록된 결과를 바탕으로 고분자량 PEO에 대한 첨가제 고분자의 설계 및 선택에 대한 통찰력을 제공하며, 이를 통해 비용 효율적이고 상업적으로 실용적인 CO2 분리막을 제조하고자 하였다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation (NRF) of Korea, funded by the Ministry of Science and ICT (RS-2024-00333678) and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20214000000090, Fostering human resources training in advanced hydrogen energy industry).

References

  1. Y. S. S. Young and R. Patel, "Ionic liquid consisted of composite membrane for carbon dioxide separation: A review", Membr. J., 33, 240 (2023). 
  2. Y. Yuan, F. Shi, Q. Li, Y. Yang, X. Cai, M. Sheng, and Z. Wang, "Large-scale preparation of composite membranes for CO2 separation via interfacial polymerization: Monomer selection and processing parameter optimization", J. Membr. Sci., 698, 122622 (2024). 
  3. I. Hossain, A. Husna, and H. B. Park, "1,3-Dioxolane-based CO2 selective polymer membranes for gas separation", Membr. J., 33, 94 (2023). 
  4. S. Li, Y.-J. Sun, Z.-X. Wang, C.-G. Jin, M.-J. Yin, and Q.-F. An, "Rapid fabrication of high-permeability mixed matrix membranes at mild condition for CO2 capture", Small, 19, 2208177 (2023). 
  5. S. L. Liu, L. Shao, M. L. Chua, C. H. Lau, H. Wang, and S. Quan, "Recent progress in the design of advanced PEO-containing membranes for CO2 removal", Prog. Polym. Sci., 38, 1089 (2013). 
  6. A. Kargari and S. Rezaeinia, "State-of-the-art modification of polymeric membranes by PEO and PEG for carbon dioxide separation: A review of the current status and future perspectives", J. Ind. Eng. Chem., 84, 1 (2020). 
  7. W.-S. Sun, M.-J. Yin, W.-H. Zhang, S. Li, N. Wang, and Q.-F. An, "Green techniques for rapid fabrication of unprecedentedly high-performance PEO membranes for CO2 capture", ACS Sustain. Chem. Eng., 9, 10167 (2021). 
  8. E. S. Yi, S. R. Hong, and H. K. Lee, "CO2 separation performance of pebax mixed matrix membrane using PEI-GO@ZIF-8 as filler", Membr. J., 33, 23 (2023). 
  9. H. J. Min, M. Kang, Y.-S. Bae, R. Blom, C. A. Grande, and J. H. Kim, "Thin-film composite mixed-matrix membrane with irregular micron-sized UTSA-16 for outstanding gas separation performance", J. Membr. Sci., 669, 121295 (2023). 
  10. A. Ghadimi, S. Norouzbahari, V. Vatanpour, and F. Mohammadi, "An investigation on gas transport properties of cross-linked poly(ethylene glycol diacrylate) (XLPEGDA) and XLPEGDA/TiO2 membranes with a focus on CO2", Energy Fuel, 32, 5418 (2018). 
  11. H. Q. Lin and B. D. Freeman, "Gas permeation and diffusion in cross-linked poly(ethylene glycol diacrylate)", Macromolecules, 39, 3568 (2005). 
  12. A. Sabetghadam, X. Liu, S. Gottmer, L. Chu, J. Gascon, and F. Kapteijn, "Thin mixed matrix and dual layer membranes containing metal-organic framework nanosheets and PolyactiveTM for CO2 capture", J. Membr. Sci., 570-571, 226 (2019). 
  13. J. E. Shin, S. K. Lee, Y. H. Cho, and H. B. Park, "Effect of PEG-MEA and graphene oxide additives on the performance of Pebax® 1657 mixed matrix membranes for CO2 separation", J. Membr. Sci., 572, 300 (2019). 
  14. S. Bandehali, A. Moghadassi, F. Parvizian, S. M. Hosseini, T. Matsuura, and E. Joudaki, "Advances in high carbon dioxide separation performance of poly (ethylene oxide)-based membranes", J. Energy Chem., 46, 30 (2020). 
  15. N. U. Kim, B. J. Park, M. D. Guiver, and J. H. Kim, "Use of non-selective, high-molecular-weight poly(ethylene oxide) membrane for CO2 separation by incorporation of comb copolymer", J. Membr. Sci., 605, 118092 (2020). 
  16. J. Deng, Z. Dai, J. Yan, M. Sandru, E. Sandru, R. J. Spontak, and L. Deng, "Facile and solvent-free fabrication of PEG-based membranes with interpenetrating networks for CO2 separation", J. Membr. Sci., 570-571, 455 (2019). 
  17. H. Lin and B. D. Freeman, "Gas solubility, diffusivity and permeability in poly(ethylene oxide)", J. Membr. Sci., 239, 105 (2004). 
  18. H. J. Min, M. Kang, C. S. Lee, and J. H. Kim, "Dual-functional interconnected pebble-like structures in highly crystalline poly (ethylene oxide) membranes for CO2 separation", Sep. Purif. Technol., 263, 118363 (2021). 
  19. S. Feng, J. Ren, K. Hua, H. Li, X. Ren, and M. Deng, "Poly(amide-12-b-ethylene oxide)/polyethylene glycol blend membranes for carbon dioxide separation", Sep. Purif. Technol., 116, 25 (2013). 
  20. X. Mei Wu, Q. Gen Zhang, P. Ju Lin, Y. Qu, A. Mei Zhu, and Q. Lin Liu, "Towards enhanced CO2 selectivity of the PIM-1 membrane by blending with polyethylene glycol", J. Membr. Sci., 493, 147 (2015). 
  21. I. Hossain, D. Kim, A. Z. Al Munsur, J. M. Roh, H. B. Park, and T.-H. Kim, "PEG/PPG-PDMS-based cross-linked copolymer membranes prepared by ROMP and in situ membrane casting for CO2 separation: an approach to endow rubbery materials with properties of rigid polymers", ACS Appl. Mater. Interfaces, 12, 27286 (2020). 
  22. I. Jeong, I. Hossain, A. Husna, and T.-H. Kim, "Development of CO2-philic blended membranes using PIM-PI and PIM-PEG/PPG", Macromol. Mater. Eng., 308, 2200596 (2023). 
  23. T. Khosravi and M. Omidkhah, "Preparation of CO2-philic polymeric membranes by blending poly(ether-b-amide-6) and PEG/PPG-containing copolymer", RSC Advances, 5, 12849 (2015). 
  24. D. Kim, I. Hossain, Y. Kim, O. Choi and T.-H. Kim, "PEG/PPG-PDMS-adamantane-based cross-linked terpolymer using the ROMP technique to prepare a highly permeable and CO2-selective polymer membrane", Polymers, 12, 1674 (2020). 
  25. S. Yu, S. J. An, K. J. Kim, J. H. Lee, and W. S. Chi, "High-loading poly(ethylene glycol)-blended poly(acrylic acid) membranes for CO2 separation", ACS Omega., 8, 2119 (2023). 
  26. X. Lu and R. A. Weiss, "Phase behavior of blends of poly(ethylene glycol) and partially neutralized poly(acrylic acid)", Macromolecules, 28, 3022 (1995). 
  27. R. M. Lilleby Helberg, Z. Dai, L. Ansaloni, and L. Deng, "PVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes: Synergistic enhancement of CO2 separation performance", Green Energy Environ., 5, 59 (2020). 
  28. E. M. Abdelrazek, A. M. Abdelghany, S. I. Badr, and M. A. Morsi, "Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles", J. Mater. Res. Technol., 7, 419 (2018). 
  29. N. S. Vrandecic, M. Erceg, M. Jakic, and I. Klaric, "Kinetic analysis of thermal degradation of poly(ethylene glycol) and poly(ethylene oxide)s of different molecular weight", Thermochim. Acta., 498, 71 (2010). 
  30. C. Wang, T. Yang, W. Zhang, H. Huang, Y. Gan, Y. Xia, X. He, and J. Zhang, "Hydrogen bonding enhanced SiO2/PEO composite electrolytes for solid-state lithium batteries", J. Mater. Chem. A., 10, 3400 (2022). 
  31. N. Chen, X. Yao, C. Zheng, Y. Tang, M. Ren, Y. Ren, M. Guo, S. Zhang, and L.-Z. Liu, "Study on the miscibility, crystallization and crystalline morphology of polyamide-6/polyvinylidene fluoride blends", Polymer, 124, 30 (2017). 
  32. A. K. Khasanova and B. A. Wolf, "PEO/CHCl3. Crystallinity of the polymer and vapor pressure of the solvent. Equilibrium and nonequilibrium phenomena", Macromolecules, 36, 6645 (2003). 
  33. B. Crist and J. M. Schultz, "Polymer spherulites: A critical review", Prog. Polym. Sciv, 56, 1 (2016). 
  34. H.-L. Chen, L.-J. Li, and T.-L. Lin, "Formation of segregation morphology in crystalline/amorphous polymer blends:  Molecular weight effect", Macromolecules, 31, 2255 (1998). 
  35. M. Yang and C. Gogos, "Crystallization of poly(ethylene oxide) with acetaminophen - A study on solubility, spherulitic growth, and morphology", Eur. J. Pharm. Biopharm., 85, 889 (2013). 
  36. S. Bertoni, B. Albertini, and N. Passerini, "Spray congealing: An emerging technology to prepare solid dispersions with enhanced oral bioavailability of poorly water soluble drugs", Molecules, 24, 3471 (2019). 
  37. J. Li, S. Wang, K. Nagai, T. Nakagawa, and A. W. H. Mau, "Effect of polyethyleneglycol (PEG) on gas permeabilities and permselectivities in its cellulose acetate (CA) blend membranes", J. Membr. Sci., 138, 143 (1998). 
  38. M. Kang, H. J. Min, N. U. Kim, and J. H. Kim, "Amphiphilic micelle-forming PDMS-PEGBEM comb copolymer self-assembly to tailor the interlamellar nanospaces of defective poly(ethylene oxide) membranes", Sep. Purif. Technol., 257, 117892 (2021). 
  39. J. H. Lee, J. Y. Lim, M. S. Park, and J. H. Kim, "Improvement in the CO2 permeation properties of high-molecular-weight poly(ethylene oxide): use of amine-branched poly(amidoamine) dendrimer", Macromolecules, 51, 8800 (2018). 
  40. Z.-X. Wang, W.-H. Zhang, G. Yu, M.-J. Yin, S. Li, and Q.-F. An, "Defect-free PEO membrane fabrication by hydrogen bonding coupling thermal annealing for carbon capture", Chem. Eng. Sci., 282, 119354 (2023). 
  41. K. W. Yoon and S. W. Kang, "Highly permeable and selective CO2 separation membrane to utilize 5-hydroxyisophthalic acid in poly(ethylene oxide) matrix", Chem. Eng. J., 334, 1749 (2018).