• 제목/요약/키워드: PECVD method

Search Result 204, Processing Time 0.156 seconds

A Study on Characteristics of Microcrystalline-silicon Films Fabricated by PECVD Method (플라즈마 화학증착법으로 제작한 미세결정질 실리콘 박막 특성에 관한 연구)

  • Lee, Ho-Nyeon;Lee, Jong-Ha;Lee, Byoung-Wook;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.848-852
    • /
    • 2008
  • Characteristics of microcrystalline-silicon thin-films deposited by plasma-enhanced chemical-vapor deposition (PECVD) method were studied. There were optimum values of RF power density and $H_2$ dilution ratio $(H_2/(SiH_4+H_2))$; maximum grain size of about 35 nm was obtained at substrate temperature of 250 $^{\circ}C$ with RF power density of 1.1 W/$cm^2$ and $H_2$ dilution ratio of 0.91. Larger grain was obtained with higher substrate temperature up to 350 $^{\circ}C$. Grain size dependence on RF power density and $H_2$ dilution ratio could be explained by etching effects of hydrogen ions and changes of species of reactive precursors on growing surface. Surface-mobility activation of reactive precursors by temperature could be a reason of grain-size dependence on the substrate temperature. Microcrystalline-silicon thin-films that could be used for flat-panel electronics such as active-matrix organic-light-emitting-diodes are expected to be fabricated successfully using these results.

Characteristics of Diamond Like Carbon Thin Film Deposited by Plasma Enhanced Chemical Vapor Deposition Method with Gas Flow Rate and Radio Frequency Power (가스 유량과 RF Power에 따라 PECVD 방법으로 증착된 DLC 박막의 특성)

  • Jeong, Seon-Yeong;Kim, Hyeon-Gi;Ju, Seong-Hu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.88-88
    • /
    • 2018
  • DLC(Diamond Like Carbon) 박막은 높은 열전도도, 큰 전기저항, 높은 강도 등의 다이아몬드와 유사한 특성을 가지고 있으면서 저온 저압에서도 합성이 가능하고, 합성 조건에 따라 물리 화학적 특성도 넓게 조절 할 수 있으며 상대적으로 넓은 면적에서 균일하고 평활한 박막의 합성이 가능하여 산업적 응용 면에서도 경쟁력을 갖추고 있다[1]. 이러한 DLC 박막을 합성함에 있어서 RF-PECVD(Radio Frequency Plasma Enhanced Chemical Vapor Deposition) 방법은 PECVD 방법 중 가장 보편적으로 사용되고 또 캐패시터 타입의 RF-PECVD 방법은 균일한 대면적 증착과 대량생산이 가능하다[1,2]. 본 연구에서는 우수한 특성을 갖는 DLC 박막의 증착 조건을 찾기 위해 캐패시터 타입의 RF-PECVD를 사용하여 공정 가스의 유량과 RF Power를 변화하여 박막을 증착하고, 증착된 박막의 특성을 연구하였다. DLC 박막은 ITO(Indium Tin Oxide) 유리 기판 위에 $100^{\circ}C$에서 5 min 동안 아세틸렌($C_2H_2$) 가스를 사용하여 가스 유량과 RF Power를 변화하여 증착하였다. 증착된 DLC 박막의 특성은 투과도, 평탄도, 두께를 측정하여 비교하였다. 가시광선 영역(380-780 nm)에서 투과도를 측정한 결과 ITO 유리 기판을 기준으로 한 DLC 박막의 투과도는 가시광선 영역 평균 94.8~98.8% 사이의 값으로 매우 높은 투과율을 나타내었다. 투과도는 가스 유량이 증가함에 따라 증가하는 경향을 나타내었고, RF Power의 변화에는 특정한 변화를 나타내지 않았다. 박막의 평탄도($R_a$, $R_{rms}$)와 두께는 AFM(Atomic Force Microscope)을 사용하여 측정하였다. 평탄도 $R_{rms}$는 0.8~3.3 nm, $R_a$는 0.6~2.5 nm 사이를 나타내었고 RF Power와 가스 유량의 변화에 따른 경향성을 나타내지는 않았다. 두께는 RF Power 25 W에서 55 W로 증가함에 따라 증가하는 경향을 나타내었으나 70W에서는 가스의 유량에 따라 상이한 결과를 나타내었다.

  • PDF

Characterization of Thin Film Passivation for OLED by PECVD (PECVD에 의한 OLED 소자의 Thin Film Passivation 특성)

  • Kim, KwanDo;Jang, SeokHee;Kim, JongMin;Chang, SangMok
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.574-581
    • /
    • 2012
  • The relatively short lifetime is a major obstruction for the commercial applications of OLED. One of the reason for the short lifetime is that the organic materials are interacted with water or oxygen in the atmosphere. Protection of water or oxygen from diffusing into the organic material layers are necessary to increase the lifetime of OLED. Although encapsulation of OLED with glass or metal cans has been established, passivation methods of OLED by organic/inorganic thin films are still being developed. In this paper we have developed in-situ passivation system and thin film passivation method using PECVD by which deposition can be performed at room temperature. We have analyzed the characteristics of the passivated OLED device also. The WVTR (Water Vapor Transmission Rate) for the inorganic thin film mono-layer can be reached down to $1{\times}10^{-2}g/m^2{\cdot}day$ and improved lifetime can be obtained. Thin film passivation methods are expected to be applied to flexible display.

Non-linear optical properties of PECVD nanocrystal-Si nanosecond excitation (PECVD로 제조된 나노결정실리콘 비선형 광학적특성)

  • Yang, Hyeon-Hun;Kim, Han-Wool;Kim, Joo Hoe;Kim, Chul Joong;Lee, Chang Gwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.60.2-60.2
    • /
    • 2011
  • A study of the non-linear optical properties of nanocrystal-Si embedded in SiO2 has been performed by using the z-scan method in the nanosecond and femtosecond ranges. Substoichiometric SiOx films were grown by plasma-enhanced chemical-vapor deposition(PECVD) on silica substrates for Si excesses up to 24 at/%. An annealing at $1250^{\circ}C$ for 1 hour was performed in order to precipitate nanocrystal-Si, as shown by EFTEM images. Z-scan results have shown that, by using 5-ns pulses, the non-linear process is ruled by thermal effects and only a negative contribution can be observed in the non-linear refractive index, with typical values around $-10-10cm^2/W$. On the other hand, femtosecond excitation has revealed a pure electronic contribution to the nonlinear refractive index, obtaining values in the order of 10-12 cm2/W. Simulations of heat propagation have shown that the onset of the temperature rise is delayed more than half pulse-width respect to the starting edge of the excitation. A maximum temperature increase of ${\Delta}T=123.1^{\circ}C$ has been found after 3.5ns of the laser pulse maximum. In order to minimize the thermal contribution to the z-scan transmittance and extract the electronic part, the sample response has been analyzed during the first few nanoseconds. By this method we found a reduction of 20% in the thermal effects. So that, shorter pulses have to be used obtain just pure electronic nonlinearities.

  • PDF

Low-Temperature Processing of Amorphous Silicon and Silicon-Nitride Films Using PECVD Method (플라즈마 화학기상증착법을 이용한 비정질 규소 및 질화규소의 저온성막 연구)

  • Lee, Ho-Nyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1013-1019
    • /
    • 2007
  • Amorphous silicon and silicon-nitride films were deposited using plasma-enhanced chemical vapor deposition (PECVD) method at $150^{\circ}C$. As fraction of $H_2$ in source gas was increased, characteristics of low-temperature silicon-nitride films approached those of conventional high-temperature films; the refractive index approached 1.9 and the ratio of nitrogen-hydrogen bonds to silicon-hydrogen bonds increased. And also, as fraction of $H_2$ in source gas was increased, characteristics of low-temperature silicon films approached those of conventional high-temperature films; refractive index and optical band gap approached 4.2 and 1.8 eV, and $[Si-H]/([Si-H]+[Si-H_2])$ increased. Lower RF power and process-pressure made the amorphous silicon films to be better properties. Increase of $H_2$ ratio seemed as the common factor to get reliable amorphous silicon and silicon-nitride films for thin-film-transistors (TFTs) at low temperature.

  • PDF

A Study on DLC Hard Coating in Ocular Lens(CR-39) (안경렌즈(CR-39)에의 DLC Hard 코팅에 관한 연구)

  • Lee, Won Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.1
    • /
    • pp.87-91
    • /
    • 2001
  • The a-C:H films have been grown on the glass substrate by PECVD method, where plasma was generated with a 60 Hz line power source. The carbonization is checked from peak intensities of D($sp^3$) and G($sp^2$) peaks in Raman spectra and is analyzed using the Gaussian convolution method of spectrum. Both the bonding strength of C-H and the ratio of $sp^3$ to $sp^2$ in bonding are found to be slightly dependent of partial pressure of $C_2H_2$.

  • PDF

A Study on Tribological Properties of Diamond-like Carbon Thin Film for the Application to Solid Lubricant of MEMS Devices (MEMS 소자의 고체윤활박막으로 활용하기 위한 다이아몬드상 카본 박막의 트라이볼로지 특성 분석)

  • Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1010-1013
    • /
    • 2006
  • Hydrogenated Diamond-like carbon (DLC) films were Prepared by the radio frequency plasma enhanced chemical vapor deposition (RF PECVD) method on silicon substrates using methane $(CH_4)$ and hydrogen $(H_2)$ gas for the application to solid lubricant of MEMS devices. We have checked the influence of varying RF power on tribological properties of DLC film. We have checked their performance as two kinds of method such as FFM (Friction Force Microscope) and BOD (Ball-on Disk) measurement. The friction coefficients and the contact number of cycles to steady state decreased as the increase of RF power with FFM and BOD measurement, respectively.

Tribological Properties of Annealed Diamond-like Carbon Film Synthesized by RF PECVD Method

  • Choi, Won-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.118-122
    • /
    • 2006
  • Diamond-like carbon (DLC) films were prepared on silicon substrates by the RF PECVD (Plasma Enhanced Chemical Vapor Deposition) method using methane $(CH_4)$ and hydrogen $(H_2)$ gas. We examined the effects of the post annealing temperature on the tribological properties of the DLC films using friction force microscopy (FFM). The films were annealed at various temperatures ranging from 300 to $900^{\circ}C$ in steps of $200^{\circ}C$ using RTA equipment in nitrogen ambient. The thickness of the film was observed by scanning electron microscopy (SEM) and surface profile analysis. The surface morphology and surface energy of the films were examined using atomic force microscopy and contact angle measurement, respectively. The hardness of the DLC film was measured as a function of the post annealing temperature using a nano-indenter. The tribological characteristics were investigated by atomic force microscopy in FFM mode.

Synthesis of Diamond-Like Carbon Films on a TiO₂ Substrate by DC-Discharge Plasma Enhanced Chemical Vapor Deposition

  • 구수진;김창민;지종기
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.813-818
    • /
    • 1995
  • A diamond-like carbon (DLC) film was produced on a TiO2 substrate using a plasma enhance chemical vapor deposition (PECVD) method. The CH4-H2 plasma was produced by applying 400 V DC. The DLC film with the best crystalline structure was obtained when the concentration of CH4 in H2 was 0.75 percent by volume and total pressure was 40 torr. The presence of the diamond structure was confirmed by Raman spectroscopy, X-ray diffraction, and scanning electron microscopy methods. It was found that the diluting gas H2 played an important role in producing a DLC film using a PECVD method.