• Title/Summary/Keyword: PDMS Stamp

Search Result 46, Processing Time 0.125 seconds

Technology for Roll-based Nanoimprint Lithography Systems (롤 기반 나노임프린트 리소그래피 시스템 기술)

  • Lim, Hyungjun;Lee, Jaejong;Choi, Kee-Bong;Kim, Geehong;Lee, Sunghwi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.1-8
    • /
    • 2013
  • Roll-based, nanoimprint lithography (Roll-NIL) is one effective method to produce large-area nanopatterns continuously. Systems and processes for Roll-NIL have been developed and studied for more than 15 years. Since the shapes of the stamp and the substrate for Roll-NIL can be plates, films, and rolls, there exist many concepts to design and implement roll-NIL systems. Combinations and variations of contact-methods for variously shaped stamps and substrates are analyzed in this paper. The contact-area can be changed by using soft materials such as polydimethylsiloxane (PDMS) or silicone rubber. Ultraviolet (UV) sources appropriate for the roll-to-plate or roll-to-roll process are introduced. Finally, two roll-to-plate nanoimprint lithography systems are illustrated.

Fabrication of ZnO TFTs by micro-contact printing of silver ink electrodes

  • Shin, Hong-Sik;Yun, Ho-Jin;Nam, Dong-Ho;Choi, Kwang-Il;Baek, Kyu-Ha;Park, Kun-Sik;Do, Lee-Mi;Lee, Hi-Deok;Wang, Jin-Suk;Lee, Ga-Won
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1600-1603
    • /
    • 2009
  • In this work, we have fabricated inverted staggered ZnO TFTs with 1-${\mu}m$ resolution channel length by micro contact printing (${\mu}$-CP) method. Patterning of micro scale source/drain electrodes without etching is successfully achieved by micro contact printing method by using silver ink and polydimethylsiloxane (PDMS) stamp. And the time dependent characteristics of the sheet resistance show that Ag inklayer could be used as source and drain electrodes for ZnO TFTs.

  • PDF

A Study on the Development of Soft Stamping Printing Equipment (소프트 스탬핑 프린팅 장비 개발에 관한 연구)

  • Jang, Nam-Eun;Kim, Nam-Kuk;Lee, Youn-Seop;Kim, Youg-Tae;Shin, Kwan-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.259-262
    • /
    • 2009
  • Several universities in Korea are beginning studies related to soft stamping processes but since the studies are done with manual works thus systematic tests can't be performed due to difficulties in producing reproducible and repeatable fine patterns. Therefore, the phenomenon of destruction of the pattern forms of elastic polymers occurred during working because of inconsistent printing pressures and pinting time and there have been difficulties in maintaining flatness or producing uniform and fault-free fine structures in pinting large areas and also, there have been difficulties in multi-layered processes as patterns were changed by contacts in registering and errors in alignments. The purpose of development of this technology is to improve the process of soft lithography so that contacts between PDMS stamps and metal coated substrates in order to develop a stamp printing device that can not only shorten but also optimize processes, secure reproducibility and repeatability and is advantageous in printing large areas. Also, using this technology, this author is to develop equipment technologies and applied technologies for nano grade pattern printing processes with new concepts based on fine contact printing processes in order to apply them to diverse nano pattering processes.

  • PDF

Effect of Surface Roughness on the Formation of Micro-Patterns by Soft Lithography (표면 평탄도가 소프트리소법에 의한 미세 패턴 형성에 미치는 영향)

  • Kim, Kyung Ho;Choi, Kyun;Han, Yoonsoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.871-876
    • /
    • 2014
  • Efficiency of crystalline Si solar cell can be maximized as minimizing optical loss through antireflection texturing with inverted pyramids. Even if cost-competitive, soft lithography can be employed instead of photolithography for the purpose, some limitations still remain to apply the soft lithography directly to as-received solar grade wafer with a bunch of micro trenches on surface. Therefore, it is needed to develop a low-cost, effective planarization process and evaluate its output to be applicable to patterning process with PDMS stamp. In this study new surface planarization process is proposed and the change of micro scale trenches on the surface as a function of etching time is observed. Also, the effect of trenches on pattern quality by soft lithography is investigated using FEM structural analysis. In conclusion it is clear that the geometry and shape of trenches would be basic considerations for soft lithography application to low quality wafer.

Front-side Texturing of Crystalline Silicon Solar Cell by Micro-contact Printing (마이크로 컨텍 프린팅 기법을 이용한 결정질 실리콘 태양전지의 전면 텍스쳐링)

  • Hong, Jihwa;Han, Yoon-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.841-845
    • /
    • 2013
  • We give a textured front on silicon wafer for high-efficiency solar cells by using micro contact printing method which uses PDMS (polydimethylsiloxane) silicon rubber as a stamp and SAM (self assembled monolayer)s as an ink. A random pyramidal texturing have been widely used for a front-surface texturing in low cost manufacturing line although the cell with random pyramids on front surface shows relatively low efficiency than the cell with inverted pyramids patterned by normal optical lithography. In the past two decades, the micro contact printing has been intensively studied in nano technology field for high resolution patterns on silicon wafer. However, this promising printing technique has surprisingly never applied so far to silicon based solar cell industry despite their simplicity of process and attractive aspects in terms of cost competitiveness. We employ a MHA (16-mercaptohexadecanoic acid) as an ink for Au deposited $SiO_2/Si$ substrate. The $SiO_2$ pattern which is same as the pattern printed by SAM ink on Au surface and later acts as a hard resist for anisotropic silicon etching was made by HF solution, and then inverted pyramidal pattern is formed after anisotropic wet etching. We compare three textured surface with different morphology (random texture, random pyramids and inverted pyramids) and then different geometry of inverted pyramid arrays in terms of reflectivity.

Analysis of Kinetic Parameter Effects on Printing Property in Micro-Contact Printing of Ag Ink (Ag 잉크의 미세접촉인쇄에 있어서 동역학적 파라미터가 인쇄특성에 미치는 영향 분석)

  • Park, Sung-Ryool;Song, Chung-Kun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.7-14
    • /
    • 2010
  • This paper describes the effects of kinetic parameters such as attaching speed, attaching time, and dettaching speed on printing property of electrodes which were fabricated by micro-contact printing with Ag ink. In inking process the attaching speed was preferable to be less than 1 mm/s, attaching time as short as possible, and detaching speed larger than 1000 mm/s in order to obtain the transfer ratio of ink larger than 98%. Meanwhile in printing process the parameters were totally opposite to the results of inking process; attaching speed larger than 100 mm/s, attaching time larger than 30 sec, and detaching speed less than 1 mm/s for the best results. With the parameters we could obtain the micro-contact printed electrodes with the minimum line width of $30\;{\mu}m$, thickness of 300~500 nm, roughness less than 50 nm, and resistivity of about $15{\sim}16{\mu\Omega\cdot}cm$.