Proceedings of the Korea Institute of Convergence Signal Processing
/
2003.06a
/
pp.50-53
/
2003
본 논문에서는 multi-camera를 이용한 인터넷 기반의 지능적 감시 시스템을 제안한다. 제안된 시스템은 두 종류의 카메라, static camera와 pan-tilt camera, 를 이용하여 출입구를 감시하고, 비인가자를 추적한다. static camera는 출·입을 검출하고 출입자를 인가자와 비인가자로 분류하는데 이용되고, pan-tilt camera는 비인가자로 분류된 출입자를 추적하는데 이용된다. 제안된 시스템은 세 가지 단계: 출입구 감시, 출입자 검출 및 분류(인가자/비인가자), 비인가자 추적으로 구성된다 출입구 감시는 출입문의 밝기값 변화를 이용한다 출입자 검출 및 분류는 skin color 모델과 얼굴 크기, 위치와 관련된 휴리스틱을 이용하여 얼굴을 검출하고, PCA(Principal Component Analysis)를 이용한 eigenspace상에서의 유클리디언 디스턴스로 템플릿 얼굴과 입력 얼굴의 유사도를 계산하여 인가자인지 비인가자인지 분류한다. 비인가자 추적은 pan-tilt 카메라를 이용하여, static camera에서 분류된, 비인가자의 움직임을 검출하고 카메라를 제어함으로써 추적한다 제안된 시스템은 무인 감시 상황에서 비인가자의 출입시 감시자에게 경고 신호를 제공하고, 감시지역에서 사건 발생시, 사건의 개요를 파악하는 중요한 정보를 빠른 시간에 제공할 수 있다는 장점을 가진다.
One key factor that hinders the widespread deployment of speaker identification technologies is the requirement of long enrollment utterances to guarantee low error rate during identification. To gain user acceptance of speaker identification technologies, adaptation algorithms that can enroll speakers with short utterances are highly essential. To this end, this paper applies MLLR speaker adaptation for speaker enrollment and compares its performance against other speaker modeling techniques: GMMs and HMM. Also, to speed up the computational procedure of identification, we apply speaker clustering method which uses principal component analysis (PCA) and weighted Euclidean distance as distance measurement. Experimental results show that MLLR adapted modeling method is most effective for short enrollment utterances and that the GMMs performs better when long utterances are available.
Near-infrared (NIR) spectroscopy has been successfully utilized for the rapid identification of six typical petroleum products such as light straight-run (LSR), naphtha, kerosine, light gas oil (LGO), gasoline, and diesel. The spectral features of each product were reasonably differentiated in the NIR region, and the spectral differences provided enough qualitative spectral information for discrimination. For discrimination, principal component analysis (PCA) combined with Mahalanobis distance was used to identify each petroleum product from NIR spectra. The results showed that each product was accurately identified with an accuracy over 95%. Most noticeably, LSR, kerosine, gasoline, and diesel samples were predicted with identification accuracy of 99%. The overall results ensure that a portable NIR instrument combined with a multivariate qualitative discrimination method can be efficiently utilized for rapid and simple identification of petroleum products. This is especially important when local at-site measurements are necessary, such as accidental petroleum leakage and regulation of illegal product blending.
Park, Hyeon-Geun;An, Young-Ki;Jang, Il-Ki;Lee, Hee-Suk;Lee, Sang-Moon
Proceedings of the Korean Society of Computer Information Conference
/
2011.06a
/
pp.31-34
/
2011
영상처리 기법을 이용한 이미지 인식에 관한 컨텐츠들은 아주 다양한 알고리즘을 사용하였다. 영상처리 기법에서 이미지 인식기법 중에서 일반적인 것으로는 PCA(Principal Component Analysis) 알고리즘이 있다. 이 알고리즘이 적용된 대표적인 컨텐츠로는 얼굴 문자인식이 있다. 이 알고리즘은 정확성을 위하여 학습을 통한 영상의 저장과 인식을 통한 복잡한 알고리즘을 사용한다. 간단한 이미지 인식 컨텐츠의 경우에 복잡한 알고리즘을 사용함으로써, 시스템 처리속도에 영향을 줄 수 있다. 따라서 이 논문에서는 비교연산을 수행하는 히스토그램 매칭을 두 가지 실험 방법을 통하여, 간단한 이미지인식 시스템을 위한 알고리즘을 설계한 것이다.
The physicochemical properties of deodeok (Codonopsis lanceolate) was investigated in relation to the different steaming time and cycles of steaming and drying (S/D). Additionally, the quality characteristics of Makgeolli with different amount (0-0.45%) of steaming and drying deodeok (SD) were measured comparison to non-steaming and drying deodeok (NSD). L⁎ values of deodeok tended to decrease as the number of S/D cycles and steaming times increased, while BI showed the opposite trend for L⁎ values. Reducing sugar increased significantly from 1 to 3 S/D cycles and decreased thereafter (p<0.05). Also, processed with steaming for 4 h and 5 S/D cycles had the highest antioxidant properties. Principal component analysis (PCA) revealed that the S/D process notably influenced the properties of deodeok. Quality characteristics of Makgeolli showed that 0.45% SD resulted in higher antioxidant properties than control or NSD.
High-frequency data are now prevalent in financial time series. As a functional data arising from high-frequency financial time series, we are concerned with the intraday volatility to which functional principal component analysis (FPCA) is applied in order to achieve a dimension reduction. A review on FPCA and R function is made and high-frequency KOSPI volatility is analysed as an application.
본 논문에서 제안된 모델은 기존의 얼굴 인식 및 지명수배자 얼굴 인식 시스템보다 효과적인 인식률 향상을 위해 전역적 특징을 사용하는 PCA(Principal Component Analysis) 알고리즘과 지역적 특징을 사용하는 2D-HMM(Hidden Markov Model) 알고리즘을 결합한 지명수배자 얼굴인식 시스템이다. 입력된 영상을 전역적 얼굴인식 알고리즘을 통해 얼굴 탐지 및 인식을 수행하고, 탐지 및 인식에 실패한 영상은 지역적 얼굴인식 알고리즘을 통해 2차 인식 과정을 수행한다. 실험과 분석을 통해 제안된 방법을 효율성을 증명하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.235-238
/
2021
최근 코로나 19로 인해 비대면 활동이 늘어나고 있다. 비대면 회의, 비대면 강의, 비대면 과제 등이 이에 해당한다. 그에 따라 가상공간을 활용한 활동 또한 많은 관심을 받고 있다. 가상공간에서 인물들 사이 원활한 소통 및 현실감을 위해서는 실사적인 인물묘사가 필요하다. 따라서 실제 인물의 헤어스타일과 유사한 헤어스타일을 자연스럽게 증강시켜주는 것이 매우 중요하다. 본 논문에서는 실사적인 아바타 생성을 위한 헤어스타일의 분류 및 탐색방법을 제안한다. 이를 위해 본 논문에서는 우선 PCA(Principal Component Analysis) 와 K-means clustering 을 통해 헤어스타일에 대한 군집화를 진행한다. 그리고 Shape Indexed features를 이용하여 군집화 된 결과로부터 제일 유사한 헤어스타일 탐색방법을 제안하고 그 효용을 입증하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.204-207
/
2021
LiDAR 장비 및 SfM 과 MVS 방법을 이용하여 생성된 point cloud 와 mesh 에는 항상 노이즈가 포함되어 있다. 이러한 노이즈를 제거하기 위해선 노이즈와 edge 를 효과적으로 구분해낼 수 있어야 한다. 노이즈를 제거하기 위해 mesh 로부터 edge 를 먼저 구분해낸 후 edge 에 해당하는 영역과 평면에 해당하는 영역에 서로 다른 필터를 사용하는 많은 연구들이 있지만 강한 노이즈가 포함된 mesh 에서는 edge를 잘 구분해내지 못하는 문제가 존재한다. 이러한 방법들은 mesh 로부터 edge 를 구분해내는 알고리즘의 성능이 노이즈를 제거하는 전체 알고리즘의 성능에 큰 영향을 주기 때문에 강한 노이즈에서도 edge 를 잘 구분해낼 수 있는 알고리즘이 필요하다. 본 논문에서는 PCA 와 graph-cut 을 이용하여 강한 노이즈가 포함된 mesh 에서 edge 영역을 추출하는 알고리즘을 제안한다.
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.245-246
/
2022
최근 IoT 환경에서 기계학습을 이용한 공격 탐지 모델의 연구가 활발히 진행되고 있으며, 탐지 정확도도 점차 향상되고 있다. 하지만, IoT 환경의 특징인 저 사양 하드웨어, 고차원의 특징, 방대한 트래픽 등으로 인해 탐지성능이 저하되는 문제가 있다. 따라서 본 논문에서는 MQTT(Message Queuing Telementry Transport) 프로토콜 기반의 IoT 환경에서 수집된 데이터셋을 대상으로 주성분 분석(Principal Component Analysis)과 LightGBM을 이용하여 데이터셋 차원을 감소시키고, 공격 클래스를 분류하였다. 실험결과 원본 데이터셋 차원을 주성분 3개(약 9%)로 감소시켰음에도 모든 특징(33개)을 사용한 실험결과와 거의 유사한 성능을 보였다. 또한 기존 연구의 특징 선택을 통한 탐지 모델과 비교하였을 때도 분류성능이 더 우수한 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.