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Near-infrared (NIR) spectroscopy has been successfully utilized for the rapid identification of six typical pe­
troleum products such as light straight-run (LSR), naphtha, kerosine, light gas oil (LGO), gasoline, and diesel. 
The spectral features of each product were reasonably differentiated in the NIR region, and the spectral differ­
ences provided enough qualitative spectral information for discrimination. For discrimination, principal com­
ponent analysis (PCA) combined with Mahalanobis distance was used to identify each petroleum product from 
NIR spectra. The results showed that each product was accurately identified with an accuracy over 95%. Most 
noticeably, LSR, kerosine, gasoline, and diesel samples were predicted with identification accuracy of 99%. 
The overall results ensure that a portable NIR instrument combined with a multivariate qualitative discrimina­
tion method can be efficiently utilized for rapid and simple identification of petroleum products. This is espe­
cially important when local at-site measurements are necessary, such as accidental petroleum leakage and 
regulation of illegal product blending.

Introduction

Petroleum products such as diesel and naphtha are impor­
tant products in a humans daily life, as they have played a 
critical role in many industries as an energy and petrochemi­
cal source. There are several different petroleum products 
for diverse usage based on their physical and chemical prop- 
erties.1 Recently, the regulation related to these products has 
been gradually becoming more strict due to environmental 
and product quality issues. Environmentally, when oil leak­
age or other accidents happen, it is essential to identify a 
product as soon as possible in order to proceed with the 
proper following actions. On the other hand, there is a possi­
bility of uncontrolled mixing from transportation using a 
long-distance pipeline, or illegal blending and selling of 
these products. In these cases, rapid and simple analytical 
instrumentation is necessary. Currently it requires several 
analytical instruments, including gas chromatography and 
ASTM D86 distillation analyzer to identify the products. 
Additionally, conventional analytical methods require long 
analysis time (more than 1 hour), high investment cost, and 
continuous maintenance.

Alternatively, near-infrared (NIR) spectroscopy2,3 is an 
excellent analytical method for the identification of petro­
leum products because it is fast, rugged, and provides highly 
reproducible results with minimal maintenance. Addition­
ally, a compact and portable NIR instrument is now com­
mercially available. The rapid identification of petroleum 
products using NIR spectroscopy has been studied. Six dif­
ferent typical petroleum products of light straight-run (LSR), 
naphtha, kerosine, gas oil, gasoline, and diesel were exam­
ined in this study. These products are produced from the 
fractional distillation of crude oil or blending with other 

components. The physical appearance of these samples is 
similar, all as a clear liquid form. The corresponding physi­
cal properties are summarized in Table 1. There is another 
petroleum product from crude oil called atmospheric residue 
(AR, boiling temperature over 350 oC and main fuel for 
power stations, ships, heating installations), which is com­
pletely dark, viscous, and easy to distinguish, therefore it 
was not included in this study.

Principal component analysis (PCA)4,5 combined with 
Mahalanobis distance6,7 was used to discriminate petroleum 
products from their NIR spectra. PCA is the data reconstruc­
tion and reduction method using principal component (a.k.a. 
eigenvector, loading vector, spectral loading or factor) and 
score which is a scaling constant used to reconstruct the 
spectra. Usually the score is used for qualitative or quantita­
tive analysis. Mahalanobis distance is useful and widely 
used method for the determination of the discrimination 
boundary. Mahalanobis distance accounts for the differences 
of a data cluster by the range of variability. That means it 
constructs a boundary space of discrimination that weights 
more where the larger variation in the data is present.

The spectral features of six petroleum products were rea­
sonably different in the NIR region. The differences in phys­
ical properties and chemical compositions of these products 
resulted in identifiable spectral features. Those spectral fea-

Table 1. Typical properties of petroleum products used in this study

Products Carbon Number Boiling Range (oC)
LSR C5 - C7 30- 75

Naphtha C6 - C10 75-190
Kerosine C9 - C15 190 -250

LGO C13 - C18 250 -350
Gasoline C5 - C12 30 -210
Diesel C11 - C21 200-370
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tures provided enough qualitative information for discrimi­
nation using multivariate techniques such as PCA. By using 
PCA combined with Mahalanobis distance, six different 
petroleum products were successfully classified and identi­
fied.

Experimental Section

Sample Preparation. Three hundred seventy two sam­
ples of LSR, naphtha, kerosine, light gas oil (LGO), gaso­
line, and diesel were obtained over a 4 month period at SK 
Corporation, Ulsan, Korea. Over this long period, samples 
were cautiously collected to give more compositional and 
process related variations into the data set. Immediately after 
collection, samples were sealed and stored in a refrigerator 
at 4 oC to prevent evaporation of the hydrocarbons.

NIR Spectra. NIR spectra were collected over the 1100 
to 2500 nm spectral region with a NIRSystems model 6500 
spectrometer (Foss NIRSystems, Silver Spring, MD) 
equipped with a tungsten halogen lamp, PbS detector, and a 
fiber optic interactance/reflectance probe. The resolution of 
collected spectra was 10 nm with 2 nm data intervals. The 
fiber optic probe consisted of concentric rings of illuminat­
ing fibers (inner core, 210 fibers), receiving fibers (outer 
ring, 210 fibers), and a reflecting mirror. The length of the 
optical fibers from the probe to spectrometer was 2 m. The 
distance between the optical fibers and the reflecting mirror 
was 0.5 cm, resulting with an actual pathlength of 1 cm. NIR 
spectra were collected by positioning the fiber optic probe 
into each sample that was contained in a sealed bottle. Each 
NIR sample spectrum consisted of 16 co-added scans.

Data Set Preparation and Discriminant Analysis. The 
data set was prepared as described in Table 2. The division 
of samples was intended to assign roughly 75 to 80 percent 
of the total spectra into the calibration set. Each calibration 
model was developed using each calibration data set. A total 
of 99 spectra from 6 different petroleum products were com­
bined into the prediction data set, which served as a valida­
tion set. Spectra in the calibration and prediction set were 
randomly chosen.

Discriminant analysis was performed using GRAMS/32 
software with an add-on PLS algorithm (Galactic Industries 
Corporation, Salem, NH). NIR spectra were imported into 
GRAMS/32 before the discriminant analysis was performed.

Table 2. Description of data set preparation

Products Number of 
total spectra

Number of spectra 
In calibration

Number of spectra 
in prediction

LSR 57 43 14
Naphtha 61 43 18
Kerosine 61 45 16

LGO 64 47 17
Gasoline 65 47 18
Diesel 64 48 16
Total 372 99

1194 nm 1210 nm
2.4

-.1 t-------------- '---------------■-------------- '-------------- '---------------'---------------'---------------
1100 1300 1500 1700 1900 2100 2300 2500

Wavelength (nm)

Figure 1. NIR spectra (1100-2500 nm) of each petroleum 
product. The spectra were averaged from all spectra in each 
calibration data set.

Results and Discussion

Spectral Features. For selective qualitative identification 
of each petroleum products it requires that at least minute 
spectral differences between each product should be recog­
nized in the NIR region. NIR spectra (1100-2500 nm) of 
each petroleum product shown in Figure 1 are an average of 
all spectra in each calibration data set. Examination of the 
spectra reveals considerable spectral differences between 
each of the petroleum products. The most useful spectral 
information is located in the 1100 to 1650 nm and 1800 to 
2100 nm spectral ranges. The spectral differences are more 
dominant in the 1800 to 2100 nm range compared to the 
1100 to 1650 nm range. The 1650 to 1800 nm and 2100 to 
2500 nm ranges contain no useful spectral information due 
to strong absorption of NIR radiation from the relatively 
long optical pathlength. Therefore, these ranges are excluded 
from further analysis in this study.

The most systematic spectral variations are observed 1170 
to 1230 nm range. The spectral variation based on CH2/ CH3 

ratio in normal linear hydrocarbons and C6 structural iso­
mers has been systematically investigated in our research 
group.8,9 As increasing the chain length in normal linear 
hydrocarbons, which corresponds to increasing the number 
of CH2 groups with a fixed number of CH3 groups, the CH2 

second overtone band at 1210 nm became more dominant 
while CH3 second overtone band at 1 194 nm became less 
dominant. On the contrary, between C6 isomers, increasing 
the number of CH3 groups (more branched structure) in a 
given molecular weight, CH2 second overtone band at 1210 
nm became less dominant while CH3 second overtone band 
at 1 194 nm became more dominant. The trend exactly 
matches with that of the petroleum products, macroscopi­
cally. As shown in Table 1, the molecular weights and num­
ber of CH2 groups relative to CH3 groups are increasing in 
the order of LSR, naphtha, kerosine and LGO, respectively. 
The CH3 band at 1194 nm is decreasing while the CH2 band 
at 1210 nm is increasing from LSR to LGO (shown in Fig. 
1). Gasoline and diesel are blended products. Gasoline, espe­
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cially, is produced from several different petrochemical feed 
stocks such as reformate, which contains high concentration 
of aromatic hydrocarbons. Therefore, spectral features of 
gasoline are significantly different from other petroleum 
products, such as the aromatic CH band at 1140 and 1630 
nm. The major components of diesel are LGO (mainly) and 
kerosine. Therefore, the corresponding spectral features are 
between LGO and kerosine, albeit closer to LGO. The mag­
nitude of absorption in the 1800-2100 nm region is increas­
ing from LSR to LGO due to higher molar absorptivity from 
higher molecular weight compounds.

Overall, unique spectral features of each petroleum prod­
ucts exist and can provide selective information for the qual­
itative discrimination of each product. It is expected that 
there will be spectral overlaps between products with similar 
physical properties, such as LGO and diesel. However, by 
using multivariate discrimination techniques such as Princi­
pal Component Analysis (PCA) combined with Mahalano- 
bis distance, minute spectral differences can be discriminat­
ed.

Preliminary Qu이itative Examination. Before develop­
ing qualitative calibration models for each product, PCA 
was performed on the combined data set (total 273 spectra) 
of all calibration spectra from each product to examine the 
discrimination feasibility. PCA is the data reconstruction 
method using principal component (a.k.a. eigenvector) and 
scores, which is a scaling constant used to reconstruct the

Figure 2. Score cluster plot using first and second principal 
component (PC). PCA was performed on the combined data set 
(total 273 spectra) of all calibration spectra from each product.

spectra. Figure 2 shows the score cluster plot using the first 
and second principal component (PC). The first PC 
describes the greatest variation in the spectral data set and 
the second PC describes the second greatest variation. The 
top and bottom plots show the score scatter of the raw and 
second derivative spectra, respectively. It is well known that 
second derivatization of raw spectra helps to enhance the 
spectral features and remove (or at least reduce) baseline 
variation.10 Better discrimination is achieved using second 
derivative spectra by removing unrelated spectral variation, 
such as baseline variation. The points from a given product 
are more closely located to each other and better segregation 
between products is shown with second derivative spectra. 
Especially in kerosine, there are some overlaps with diesel in 
the raw spectra, but are clearly discriminated when using the 
second derivative spectra. Because the composition of gaso­
line is quite different from other petroleum products, the 
points are fairly remote from other products and closely 
located to each other. There are some overlaps in data points 
between LSR and naphtha, diesel and LGO, which are due 
to compositional overlap as shown in Table 1. However, the 
data points are reasonably discriminated in the PC score 
space. The overall preliminary results present successful dis­
crimination of each petroleum products when using PCA.

PCA Calibration Model Combined with Mahalanobis 
Distance Method. In the application of a multivariate cali­
bration method such as PCA, it is generally known that the 
spectral range and number of principal components (PCs) 
are critical parameters. It has been previously determined 
that the quantitative calibration performance depends on the 
spectral range utilized.10 In this study, the whole spectral 
range which combining 1100-1650 and 1800-2100 nm 
regions were examined. The spectral differences from each 
petroleum product were present throughout the entire NIR 
region, so the whole spectral range was used to incorporate 
more qualitative spectral information.

The number of PC was identified as the number of PCs 
that gave a Total Percent Variance (TPV) over 99.9%. TPV 
is an indicator of how much variation is accounted for by 
PCs. PCs represent the variation in the spectral data set, 
while eigenvalues are the relative weights of each individual 
PC. By summing eigenvalues and representing as a percent­
age, it can be estimated how much variance is described by 
the PCs. Figure 3 shows TPVs plotted as a function of the 
number of PCs for the discrimination of naphtha using sec­
ond derivative spectra. The TPV increases sharply with the 
initial PCs and gradually increases as more spectral variation 
is incorporated into the calibration model. The majority of 
the spectral variation is described within the initial 4 PCs 
and the remainder of the variation is accounted for by the 
following PCs. In this case, 6 PCs were chosen to describe 
the spectral variation over 99.9%. The optimal number of 
PCs for other products was determined by generating and 
examining the same type of plot.

Mahalanobis distance was used to set up the discrimina­
tion boundary of the score cluster. Mahalanobis distance is 
an ellipsoidal boundary that circumscribes a data cluster. In
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Figure 3. TPV (Total Percent Variance) plotted as a function of 
the number of PCs for the discrimination of naphtha using second 
derivative spectra.

this method, the Mahalanobis matrix (M) is calculated ini­
tially:

(X -彳)'(X - X) M —----------- --------
n - 1

where X is the matrix of the location of data point, X is the 
matrix of the mean of cluster. To predict the Mahalanobis 
distance of a sample, the following equation is used:

D2 — (X -X)' M-1(X -X)

where D2 is the square of the Mahalanobis distance of the 
sample from the mean of the cluster. Consequently, the cal­
culated ellipse boundary around a cluster is the standard 
deviation (d) from the mean. In general, a sample with a 
Mahalanobis distance of 3 (3d) or greater (probability of 
0.01 or less) can be identified as non-member of a group. In 
this study, both Mahalanobis distances of 2 and 3 were used 
as the discrimination criteria.

Table 3 shows the calibration results of PCA combined 
with Mahalanobis distance using the second derivative spec­
tra. Calibration models of each product were developed 
using each calibration set, and then samples in the prediction 
set were predicted by each appropriate calibration model. 
The discrimination percent accuracy is shown in Table 3. 
Overall, the accuracy of prediction from each calibration 
model is excellent (over 95%). Relatively, the poorest results 
were observed for LGO and diesel, in comparison compared 

Table 3. Percent accuracy of discrimination of each model using 
PCA combined with Mahalanobis distance with second derivative 
spectra

Number
PCs

Mahalanobis 
distances under 2

Mahalanobis 
distances under 3

LSR 4 99.0% 99.0%
Naphtha 6 98.0% 98.0%
Kerosine 5 99.0% 99.0%

LGO 5 94.9% 93.9%
Gasoline 6 99.0% 99.0%
Diesel 9 99.0% 84.8%

to the other products. The results from LGO and diesel are 
understandable because there is considerable compositional 
overlap and the resulting spectral features are too similar to 
each other, as shown in Table 1 and Figure 1. There is no dif­
ference in accuracy between Mahalanobis distance limits of 
2 and 3, except for LGO and diesel. The score clusters of 
LSR, naphtha, kerosine and gasoline are fairly apart from 
each other, therefore the magnitude (standard deviation) of 
the circumscribing boundary does not affect the performance 
of discrimination. However, performance of discrimination 
for LGO and diesel changes with changing Mahalanobis dis­
tance limit. Since these two products are similar and the cor­
responding scores are closely located to each other, the 
narrower boundary (standard deviation of 2) gives the better 
discrimination results.

Figure 4 shows the actual predicted Mahalanobis distances 
of samples in the prediction data set using the LGO calibra­
tion model. As expected, Mahalanobis distances of gasoline, 
LSR, and naphtha are amazingly high. Additionally, pre­
dicted Mahalanobis distances of kerosine appear small due 
to the scale of the plot, however the actual distances range 
from 33 to 117. The predicted Mahalanobis distances of die­
sel and LGO are magnified inside the plot. Only one sample 
from LGO is over the Mahalanobis distance of 2 and three 
samples from diesel are under Mahalanobis distance of 2. 
However, the predicted values of LGO are more closely 
located to each other, compared to diesel, which is ranging 
from 1.8 to 31.1. Overall results show that the discrimination 
of each product has been successfully accomplished using 
PCA combined with Mahalanobis distance.

Con이usion

Six typical petroleum products have been clearly discrimi­
nated using NIR spectroscopy. By combining PCA and 
Mahalanobis distance, the products with similar property 
such as LGO and diesel were efficiently identified. With the
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help of fast NIR analysis, petroleum products can be identi­
fied in less than 1 minute without high investment as with 
conventional analyzers. In practice, there are more petro­
leum products such as lube oil, solvent, and etc. The future 
study will incorporate more petroleum products for the qual­
itative discrimination and a portable NIR instrument will be 
utilized for the practical at-site measurements. Additionally, 
the same vibrational techniques of IR and Raman spectros­
copy will be evaluated for the same qualitative discrimina­
tion.
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