Coastal ports play an essential role in developing a country and a city. Port efficiency is an important factor affecting port trade, and the importance of port efficiency for port performance has been recognized in previous literature. DEA (Data Envelopment Analysis) and SFA (Stochastic Frontier Analysis) are widely used in this field of research. However, these two methods are limited in selecting input and output variables. In addition, the literature studies on Chinese coastal ports mainly focus on the study of port clusters in local areas, which lacks a holistic approach and generally lacks up-to-date data. Therefore, to fill the gap in this area of research, this paper introduces a model combining principal component analysis and data envelopment analysis to analyze the operational efficiency of the top 17 coastal ports in China in terms of throughput based on the most recent data available in 2021. This paper identifies container throughput as the output variable, and 13 second indicators are selected as input variables from four primary indicators: land, capital, labor, and infrastructure. Four principal components were selected from 13 second indicators using PCA.After that, DEA (BBC) and DEA (CCR) were used to analyze the 17 ports, among which five were Shanghai, Ningbo-Zhoushan, Guangzhou, Xiamen, and Dongguan, respectively, DEA efficient, and the remaining 12 ports were non-DEA efficient. Finally, improvement directions for each port are derived, and brief suggestions are made. This paper provides some reference value for developing and constructing coastal ports in China.
Journal of the Korean Association of Geographic Information Studies
/
v.9
no.4
/
pp.129-141
/
2006
The image data amount is increasing rapidly that used geography, sea information etc. with great development of a remote sensing technology using artificial satellite. Therefore, people need automatic method that use image processing description than macrography for analysis remote sensing image. In this paper, we propose that acquire texture information to use GLCM(Gray Level Co-occurrence Matrix) in red tide area of artificial satellite remote sensing image, and detects red tide area by PCA(principal component analysis) automatically from this data. Method by sea color that one feature of remote sensing image of existent red tide area detection was most. but in this paper, we changed into 2 principal component accumulation images using GLCM's texture feature information 8. Experiment result, 2 principal component accumulation image's variance percentage is 90.4%. We compared with red tide area that use only sea color and It is better result.
Journal of Practical Agriculture & Fisheries Research
/
v.22
no.2
/
pp.59-67
/
2020
Growth tests on the Wando and Baengnyeongdo cultivars of Saccharina japonica were performed at the Myeongcheon and Gyedo aquafarms, Goheung in Jeollanamdo, from February to July in 2003. Five environmental conditions and 2 traits were measured monthly. The data were used to analyze the growth patterns, relationships between traits and principal component. Box plots were used to display the growth patterns. Scatter plots and regression and correlation coefficients were used to determine the strength of relationships between the traits. A principal component analysis revealed that the first principal component explained more than 91.4% and 90.5% of the total sample variance in the Myeongcheon and Gyedo aquafarms. From the viewpoint of the economic traits (blade length, blade weight), the growth of populations from the Gyedo aquafarm was stronger than that of those from the Myeongcheon aquafarm, and the growth of the Baengnyeongdo cultivar was superior to that of the Wando one.
We examined problems of the principal component analysis(PCA), which is able to analyze at the low dimensionality as a methodologv to assess hydrologic time series, and introduced the theory and characteristics of independent component analysis(ICA) that can supplement problems of principal component analysis. We also applied the global sea surface temperature(SST) of the Nino region and assessed the correlation between El $\tilde{n}ino$-Southern Oscillation(ENSO) and SST. The results of examining separation-ability of principal components using mixed signals indicate that the independent component analysis is statistically superior compared to that of the principal component analysis. Finally, we assessed correlation between ENSO and global anomaly SST. The independent component analysis was applied to the $5^{\circ}{\times}5^{\circ}$(latitude and longitude) global anomaly SST in the Nino+3.4 region that is the El $\tilde{n}ino$ observation section. We assessed the correlation with the ENSO years. These results of the analysis show that only one independent component($86\%$) was able to represent the entire behavior and was consistent with the main ENSO years. Finally, we carried out independent component analysis for summer seasonal rainfalls at nine stations and could extract ICs to reflect geographical characteristics. The increasing trend has been shown at IC-1 and IC-2 since 1970s.
Journal of the Korea Institute of Information and Communication Engineering
/
v.19
no.12
/
pp.2792-2799
/
2015
In this paper, we utilize source mel-frequency cepstral coefficients (SMFCCs), skewness, and kurtosis extracted in glottal flow signals to improve speaker recognition performance. Generally, because the high band magnitude response of glottal flow signals is somewhat flat, the SMFCCs are extracted using the response below the predefined cutoff frequency. The extracted SMFCC, skewness, and kurtosis are concatenated with conventional feature parameters. Then, dimensional reduction by the principal component analysis (PCA) and the linear discriminat analysis (LDA) is followed to compare performances with conventional systems under equivalent conditions. The proposed recognition system outperformed the conventional system for large scale speaker recognition experiments. Especially, the performance improvement was more noticeable for small Gaussan mixtures.
Temperature-dependent changes in near-infrared (NIR) spectra have been measured for oleic acid, and nonanoic acid in the pure liquid state. Particular attention has been paid to the 5400-4800 cm$\^$-1/ region where a number of combination bands appear. The NIR spectra of oleic acid show that a band at 5303 cm$\^$-1/ increases with temperature while that at 5270 cm/sup-1/ decreases. It ha been found from their second derivative spectra that these spectral changes take place stepwisely with two break points at 30 and 53$\^{C}$, which correspond to the phase transition temperatures oleic acid reported previously. Principle component analysis (PCA) has been carried out for the NIR spectra of oleic acid in the 5400-4800 cm$\^$-1/ region measured over a temperature range of 15-80$\^{C}$. core plots of the first and second principal components (PCs) show that the NIR spectra are classified into three groups; the spectra measured in the temperature range of 15-30$\^{C}$, those in the range of 31-53$\^{C}$, and those in the range of 54-80$\^{C}$. These temperature ranges correspond to those for quasi-smectic liquid crystal, disordered liquid crystal, and isotropic liquid of oleic acid in the pure liquid state. In other words, PCA provides unambiguous evidence for the phase transitions. similar studies have been carried out for petroselinic acid and nonanoic acid in the pure liquid states, but they do not show any evidence for phase transitions.
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.33
no.2
/
pp.145-155
/
2023
Objectives: A fit test panel is needed to identify the fit performance of a respirator and its face seal. This is a criterion for selecting subjects that can represent the facial characteristics of users. Although anthropometry data has been developed for people in United States and China it is not yet present in Korea. This study aimed to develop a Korean fit test panel and test headform. Methods: For the 7th and 8th waves of the Size Korea anthropometry data, facial measurements of 11,429 people aged 15 to 69 years were used for analysis. PCA and bivariate panel were classified using the ISO16976-2:2022(E) anthropometrics analysis method. Based on this result, a static headform was developemed and a fit test chamber was constructed. Results: Of the 11,429 Korean people used for principal component analysis, 11,300 were included in the ellipse, marking an acceptance rate of 98.87% on PCA panel. The face types were classified into five types. Among them, a large, medium, and small static headform were printed using a 3D printer. In addition, 10,985 people (96.12%) were included in the bivariate panel based on face length and face width. The y-axis (face length) boundary was 97.87 to 134.59 mm, and the x-axis (face width) boundary was 120.75 to 158.23 mm. Conclusions: Compared to the ISO analysis, the Korean principal component was narrower in the width item (PC1) and longer in the length item (PC2). For the future, it is necessary to conduct a fit test using the developed headform and chamber device to confirm the usefulness of this Korean test panel. Therefore, this study is considered valuable as basic research for Korean test panels.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.475-475
/
2022
The aim of this study is to identify the significant pollutant sources from the tributaries that are affecting the water quality of the study site, the Geum River and provide a solution to enhance the water quality. Multivariate statistical analysis modles such as cluster analysis, Principal component analysis (PCA) and positive matrix factorization (PMF) were applied to identify and prioritize the major pollutant sources of the two major tributaries, Gab-cheon and Miho-cheon, of the Geum River. PCA identifies three major pollutant sources for Gab-cheon and Miho-cheon, respectively. For Gab-cheon, wastewater treatment plant (WWTP), urban, and agricultural pollutions are identified as major pollutant sources. For Miho-cheon, agricultural, urban, and forest land are identified as major pollutant sources. On the contrary, PMF identifies three pollutant sources in Gab-cheon, same as PCA result and two pollutant sources in Miho-cheon. Water quality control scenarios are formulated and improvement of water quality in the river locations are simulated and analyzed with the Environmental Fluid Dynamic Code (EFDC) model. Scenario results were evaluated using a water quality index developed by Canadian Council of Ministers of the Environment. PCA and PMF appears to be effective to identify water pollution sources for the Geum river and also its tributaries in detail and thus can be used for the development of water quality improvement alternative of the above water bodies.
Journal of the Korea Society of Computer and Information
/
v.22
no.2
/
pp.21-27
/
2017
In this paper, we propose a pupil detection method using PCA(principal component analysis) and Hough transform. To reduce error to detect eyebrows as pupil, eyebrows are detected using projection function in eye region and eye region is set to not include the eyebrows. In the eye region, pupil candidates are detected using rank order filter. False candidates are removed by using symmetry. The pupil candidates are grouped into pairs based on geometric constraints. A similarity measure is obtained for two eye of each pair using PCA and hough transform, we select a pair with the smallest similarity measure as final two pupils. The experiments have been performed for 1000 images of the BioID face database. The results show that it achieves the higher detection rate than existing method.
Support Vector Machine (SVM) is one of powerful learning machine and has been applied to varying task with generally acceptable performance. The success of SVM for classification tasks in one domain is affected by features which represent the instance of specific class. Given the representative and discriminative features, SVM learning will give good generalization and consequently we can obtain good classifier. In this paper, we will assess the problem of feature choices for human detection tasks and measure the performance of each feature. Here we will consider HOG-family feature. As a natural extension of SVM, we combine SVM with Principal Component Analysis (PCA) to reduce dimension of features while retaining most of discriminative feature vectors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.